Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Redox-Dependent Processes in Blood Plasma, Neutrophils and Erythrocytes of Patients with Ovary Cancer after Polychemotherapy by CAP Scheme

Abstract

The dynamics of the redox-dependent processes in blood plasma, neutrophils and erythrocytes of the patients with ovary cancer of the IIIrd clinical stage by FIGO after polychemotherapy according to the CAP scheme is considered. In the blood plasma and erythrocytes there were estimated the values of protein oxidative modification: carbonyl derivatives at λ=346 nm, 370 nm, 430 nm and 530 nm; the lipid peroxidation parameters: malonic dialdehyde, dienic conjugates, ketodiens, shiffs bases; the fermentative chain of the antioxidant system: activities of catalase, glutationtransferase and superoxide dismutase. In the peripheral blood neutrophils there were cytochemically determined the myeloperoxidase activity and the number of the active neutrophils in the spontaneous NBTR-test. After the polychemotherapy there were detected higher levels of the protein oxidative modification products and the products of the lipid peroxidation in the blood plasma and erythrocytes of the patients. Simultaneous increase of the activity of the antioxidant enzymes in the blood plasma could be evident of a high level of the lipid antioxidants peroxidation system functioning, whereas the simultaneous decrease of the activity of the antioxidant enzymes in the erythrocytes was indicative of passible development of oxidative stress in them. After the chemotherapy there was observed a significant and reliable decrease of the total number of the neutrophils. After the second course of the chemotherapy the activity of myeloperoxidase in them in the spontaneous NBTR-test as well decreased. Such a dynamics of the redox-depended processes in various components of the blood in the tumour carrier was characteristic of the tumor biological picture and required the use of differential multicomponent antioxidant therapy in patients with ovary cancer.

About the Authors

T. P. Gening
Ulyanovsk State University, Ulyanovsk
Russian Federation


T. V. Abakumova
Ulyanovsk State University, Ulyanovsk
Russian Federation


D. R. Dolgova
Ulyanovsk State University, Ulyanovsk
Russian Federation


I. I. Antoneeva
Ulyanovsk State University, Ulyanovsk
Russian Federation


References

1. Дубинина Е.Е. Продукты метаболизма кислорода в функциональной активности клеток: (жизнь и смерть, созидание и разрушение). Физиологические и клинико-биохимические процессы. СПб.: изд-во «Мед. Пресса», 2006; 397.

2. Linnane A.W., Eastwood H. Cellular redox regulation and prooxidant signaling systems: a new perspective on the free radical theory of aging. Ann N Y Acad Sci. 2006; 1067: 47-55.

3. Chiarugi P., Cirri P. Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci 2003; 8: 9: 509-514.

4. Kinnula V.L., Crapo J.D. Superoxide dismutases in malignant cells and human tumors. Free Radic Biol Med 2004; 36: 6: 718-744.

5. Zhang Y., Chen F. Reactive oxygen species (ROS), troublemakers between nuclear factor-kappaB (NF-kappaB) and c-Jun NH(2)-termi-nal kinase (JNK). Cancer Res 2004; 64: 6: 1902-1905.

6. Greenlee R.T., Hill-Harmon M.B., Murray T., Thun M. Cancer statistics. CA Cancer J Clin 2001; 1: 1: 15-36.

7. Бохман Я.В. Руководство по онкогинекологии. М.: Медицина, 2002; - 534.

8. Антонеева И.И., Абакумова Т.В., Арсланова Д.Р., Чеснокова Н.П. О патогенетической взаимосвязи процессов липопероксидации, ферментативного звена антиоксидантной системы неоплазмы и функционального состояния нейтрофилов асцитической жидкости при прогрессировании рака яичников у крыс. Вест. нов. мед. технол. 2008; 4: 16-17.

9. Горошинская И.А., Светицкий П.В., Качесова П.С., Светицкий А.П. Применение наночастиц железа в термохимиотерапии экспериментальных опухолей. Онкохирургия 2013; 1: 84.

10. Kemp M., Go Y.M., Jones D.P. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 2008; 44: 6: 921-937.

11. Zitnanova I., Sumegova K., Simko M., Maruniakova A., Chovanova Z., Chavko M., Durackova Z. Protein carbonyls as a biomarker of foetal-neonatal hypoxic stress. Clin Biochem 2007; 40: 8: 567-570.

12. Лю М.Б., Подобед И.С., Едыгенова А.К. Активные формы кислорода и пероксигенации в инвазии и метастазировании неоплазм. Успех соврем. биол. 2004; 124: 4: 329-341.

13. Dorward A., Sweet S., Moorehead R., Singh G. Mitochondrial contributions to cancer cell physiology: redox balance, cell cycle, and drug resistance. J Bioenerg Biomembr 1997; 29: 4: 385-392.

14. Никифорова З.H., Варлан Г.В., Шевченко В.Е., Дмитриева Н.В. Влияние химиотерапии на кислородзависимую антимикробную активность нейтрофилов у больных раком молочной железы. Вестн РОНЦ им. H.Н. Блохина РАМН 2007; 18: 3: 61-66.

15. Антонеева И.И. Кислородзависимая антимикробная система нейтрофилов в динамике развития рака яичников. Казан. мед. журн. 2008; 89: 4: 476-478.

16. Zitvogel L., Tesniere A., Apetoh L., Ghiringhelli F., Kroemer G. Immunological aspects of anticancer chemotherapy. Bull Acad Natl Med 2008; 192: 7: 1469-1487.


Review

For citations:


Gening T.P., Abakumova T.V., Dolgova D.R., Antoneeva I.I. Redox-Dependent Processes in Blood Plasma, Neutrophils and Erythrocytes of Patients with Ovary Cancer after Polychemotherapy by CAP Scheme. Antibiot Khimioter = Antibiotics and Chemotherapy. 2014;59(5-6):20-25. (In Russ.)

Views: 322


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)