Preview

Антибиотики и Химиотерапия

Расширенный поиск

Молекулярно импринтированные полимеры для пенициллинов и тетрациклинов

Полный текст:

Аннотация

Проведён анализ описанных в литературе молекулярно импринтированных полимеров (МИП) для пенициллинов и тетрациклинов, чтобы оценить возможность использования МИП для сорбционного выделения этих антибиотиков.

Об авторах

М. И. Яхкинд
Пензенская государственная технологическая академия, Пенза
Россия


К. Р. Таранцева
Пензенская государственная технологическая академия, Пенза
Россия


М. А. Марынова
Пензенская государственная технологическая академия, Пенза
Россия


П. А. Стороженко
ГНЦ РФ «Государственный научно-исследовательский институт химии и технологии элементоорганических соединений», Москва
Россия


М. М. Расулов
ГНЦ РФ «Государственный научно-исследовательский институт химии и технологии элементоорганических соединений», Москва
Россия


Список литературы

1. Гендриксон О.Д., Жердев А.В., Дзантиев Б.Б. Молекулярно импринтированные полимеры и их применение в биохимическом анализе. Усп. биол. хим. 2006; 46: 149-192.

2. Лисичкин Г.В., Крутиков Ю.А. Материалы с молекулярными отпечатками: синтез, свойства, применение. Усп. хим. 2006; 75: 998-1017.

3. Fernández-González A., Guardia L., Badía-Laíño R., Díaz-García M.E. Mimicking molecular receptors for antibiotics - analytical implications. Trends Anal Chem 2006; 25: 949-957.

4. Писарев О.А., Ежова Н.М., Гаркушина И.С. Взаимодействие эритромицина с полимерными сорбентами, «настроенными» на молекулу антибиотика. Журн. физ. хим. 2009; 83: 142-146.

5. Ежова Н.М., Гаркушина И.С., Писарев О.А. Синтез новых гидрофильных полимерных сорбентов, несущих импринт-сайты эритромицина. Сорб. хром. проц. 2011; 11: 828-831.

6. Ежова Н.М., Гаркушина И.С., Писарев О.А. Молекулярно-импринтированные гидрофильные сорбенты для селективной сорбции эритромицина. Прикл. биохим. микробиол. 2011; 47: 694-698.

7. Javanbakht M., Pishro K.A., Nasab A.H., Akbari-adergani B. Extraction and purification of penicillin G from fermentation broth by water-compatible molecularly imprinted polymers. Mater Sci Eng C 2012; 32: 2367-2373.

8. Piletsky S., Piletska E., Karim K. et al. Custom synthesis of molecular imprinted polymers for biotechnological application. Preparation of a polymer selective for tylosin. Anal Chim Acta 2004; 504: 123-130.

9. Jiang X., Li W., Zhang Y. et al. Preparation and properties of lincomycin A molecular imprinted polymer microspheres. J Wuhan Inst Technol 2012; 34: 5: 16-19.

10. Патент США 7087748. Process. 2006.

11. Yu Y., Ye L., de Biasi V., Mosbach K. Removal of the fermentation byproduct succinyl L-tyrosine from the β-lactamase inhibitor clavulanic acid using a molecularly imprinted polymer. Biotechnol Bioeng 2002; 79: 23-28.

12. Cai W., Gupta R.B. Molecularly-imprinted polymers selective for tetracycline binding. Separ Purif Technol 2004; 35: 215-221.

13. Mirzaei M., Najafabadi S.A.H., Abdouss M. et al. Preparation and utilization of microporous molecularly imprinted polymer for sustained release of tetracycline. J Appl Polym Sci 2013; 128: 1557-1562.

14. Заявка КНР 101139411 (2008). Preparation of molecular imprinted polymer capable of removing penicillin antibiotics in fresh milk.

15. Zhang J., Wang H., Liu W. et al. Synthesis of molecularly imprinted polymer for sensitive penicillin determination in milk. Anal Lett 2008; 41: 3411-3419.

16. Wang H., Zhang J., Mao Z., Ma N. Determination ofpenicillin residues in milk by molecular imprinting technology. China Dairy Ind 2008; 36: 6: 58-61.

17. Yin J., Meng Z., Du M. et al. Pseudo-template molecularly imprinted polymer for selective screening of trace β-lactam antibiotics in river and tap water. J Chromatogr A 2010; 1217: 5420-5426.

18. Заявка КНР 102135527. Method for detecting antibiotic residue in soil by using matrix solid-phase dispersion technique. 2011.

19. Kempe H., Kempe M. Influence of salt ions on binding to molecularly imprinted polymers. Anal Bioanal Chem 2010; 396: 1599-1606.

20. Zhang X., Chen L., Xu Y. et al. Determination of β-lactam antibiotics in milk based on magnetic molecularly imprinted polymer extraction coupled with liquid chromatography - tandem mass spectrometry. J Chromatogr B 2010; 878: 3421-3426.

21. Kempe H., Kempe M. QSRR analysis of β-lactam antibiotics on a penicillin G targeted MIP stationary phase. Anal Bioanal Chem 2010; 398: 3087-3096.

22. Skudar K., Brüggemann O., Wittelsberger A., Ramström O. Selective recognition and separation of β-lactam antibiotics using molecularly imprinted polymers. Anal Comm 1999 36: 327-331.

23. Cederfur J., Pei Y., Zihui M., Kempe M. Synthesis and screening of a molecularly imprinted polymer library targeted for penicillin G. J Comb Chem 2003; 5: 67-72.

24. Патент Испании 2197811. Sintesis de derivados fluorescentes de antibioticos β-lactamicos. 2005.

25. Moreno-Bondi M.C., Benito-Peña E., San Vicente B. et al. Molecularly imprinted polymers as selective recognition elements for optical sensors based on fluorescent measurements. Transducers'03: 12th Int. Conf on Transducers, Solid-State Sensors, Actuators and Microsystems, Boston. 2003; 2: 975-978.

26. Benito-Peña E., Moreno-Bondi M.C., Aparicio S. et al. Molecular engineering of fluorescent penicillins for molecularly imprinted polymer assays. Anal Chem 2006; 78: 2019-2027.

27. Moreno-Bondi M.C., Urraca J. L., Benito-Peña E. et al. Molecularly imprinted polymers as biomimetic receptors for fluorescence based optical sensors. Proc. SPIE, 6619, 66190C. 2007.

28. Wagner R., Wan W., Biyikal M. et al. Synthesis, spectroscopic, and analyte-responsive behavior of a polymerizable naphthalimide-based carboxylate probe and molecularly imprinted polymers prepared thereof. J Org Chem 2013; 78: 1377-1389.

29. Urraca J.L., Hall A.J., Moreno-Bondi M.C., Sellergren B. A stoichiometric molecularly imprinted polymer for the class-selective recognition of antibiotics in aqueous media. Angew Chem Int Ed 2006; 45: 5158-5161.

30. Urraca J.L., Moreno-Bondi M.C., Hall A.J., Sellergren B. Direct extraction of penicillin G and derivatives from aqueous samples using a stoichiometrically imprinted polymer. Anal Chem 2007; 79: 695-701.

31. Urraca J.L., Moreno-Bondi M.C., Orellana G. et al. Molecularly imprinted polymers as antibody mimics in automated on-line fluores cent competitive assays. Anal Chem 2007; 79: 4915-4923.

32. Заявка США 2012/070879. Reduction of antibiotic activity or concentration in biological samples using molecularly imprinted polymers. 2012.

33. Заявка КНР 102175733. Method for fast detecting application of molecular imprinted technique in digoxin and penicillin. 2011.

34. Заявка КНР 101762630. Preparation method of molecular imprinted biosensor for on-site quick detection of penicillin. 2010.

35. Li L., Zhang J., Zhao J. et al. Preparation of penicillin imprinted membrane electrochemical sensor. Chin J Bioprocess Eng 2010; 8: 5: 53-58.

36. Hu Y., Li J., Zhang Z. et al. Imprinted sol-gel electrochemical sensor for the determination of benzylpenicillin based on Fe3O4@SiO2/multiwalled carbon nanotubes-chitosans nanocomposite film modified carbon electrode. Anal Chim Acta 2011; 698: 61-68.

37. Giovannoli C., Passini C., Baravalle P. et al. An innovative approach to molecularly imprinted capillaries for polar templates by grafting polymerization. J Mol Recognit 2012; 25: 377-382.

38. Caro E., Marce R.M., Cormack P.A.G. et al. Synthesis and application of an oxytetracycline imprinted polymer for the solid-phase extraction of tetracycline antibiotics. Anal Chim Acta 2005; 552: 81-86.

39. Xiong Y, Zhou H., Zhang Z. et al. Molecularly imprinted on-line solidphase extraction combined with flow-injection chemiluminescence for the determination of tetracycline. Analyst 2006; 131: 829-834.

40. Yang C.-Y., Xiong Y., He C., Zhang Z.-J. Molecularly imprinted on-line solid-phase extraction combined with flow injection chemiluminescence for determination of chlortetracycline. Chin J Appl Chem 2007; 24: 273-277.

41. Заявка КНР 101130580. Tetracycline molecularly imprinted polymer and uses of the same. 2008.

42. Divya M.P., Rajput Y.S., Sharma R. Synthesis and application of tetracycline imprinted polymer. Anal Lett 2010; 43: 919-928.

43. Qu S., Wang X., Tong C., Wu J. Metal ion mediated molecularly imprinted polymer for selective capturing antibiotics containing betadiketone structure. J Chromatogr A 2010; 1217: 8205-8211.

44. Jing T., Gao X.D., Wang P. et al. Preparation of high selective molecularly imprinted polymers for tetracycline by precipitation polymerization. Chin Chem Lett 2007; 18: 1535-1538.

45. Jing T., Gao X.-D., Wang P. et al. Determination of trace tetracycline antibiotics in foodstuffs by liquid chromatography - tandem mass spectrometry coupled with selective molecular-imprinted solid-phase extraction. Anal Bioanal Chem 2009; 393: 2009-2018.

46. Заявка КНР 101397163. Method for directly purifying tetracycline in water-containing sample by using molecularly imprinted polymer. 2009.

47. Заявка КНР 101402706. Method for preparing tetracycline molecular imprinted polymer used for water environment. 2009.

48. Qu G., Zheng S., Liu Y. et al. Metal ion mediated synthesis of molecularly imprinted polymers targeting tetracyclines in aqueous samples. J Chromatogr B 2009; 877: 3187-3193.

49. Dai J., Pan J., Xu L. et al. Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium. J Hazard Mater 2012; 205-206: 179-188.

50. Chen L., Liu J., Zeng Q. Preparation of magnetic molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and tissue samples. J Chromatogr A 2009; 1216: 3710-3719.

51. Suedee R., Srichana T., Chuchome T., Kongmark U. Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water. J Chromatogr B 2009; 811: 191-200.

52. Заявка КНР 101246150. Tetracycline molecular imprinted integral column preparation method. 2008.

53. Sun X., He X., Zhang Y., Chen L. Determination of tetracyclines in food samples by molecularly imprinted monolithic column coupling with high performance liquid chromatography. Talanta 2009; 79: 926-934.

54. Hu X., Pan J., Hu Y. et al. Preparation and evaluation of solid-phase microextraction fiber based on molecularly imprinted polymers for trace analysis of tetracyclines in complicated samples. J Chromatogr A 2008; 1188: 97-107.

55. Hu X., Pan J., Hu Y., Li G. Preparation of molecularly imprinted polymer coatings with the multiple bulk copolymerization method for solidphase microextraction. J Appl Polym Sci 2011; 120: 1266-1277.

56. Trotta F., Baggiani C., Luda M.P. et al. A molecular imprinted membrane for molecular discrimination of tetracycline hydrochloride. J Membr Sci 2005; 254: 13-19.

57. Lv Y.-K., Wang L.-M., Yang L. et al. Synthesis and application of molecularly imprinted poly(methacrylic acid)-silica hybrid composite material for selective solid-phase extraction and high-performance liquid chromatography determination of oxytetracycline residues in milk. J Chromatogr A 2012; 1227: 48-53.

58. Morais E.C., Correa G.G., Brambilla R. et al. Silica imprinted materials containing pharmaceuticals as a template: textural aspects. J Sol-Gel Sci Technol 2012; 64: 324-334.

59. Morais E.C., Correa G.G., Brambilla R. et al. The interaction of encapsulated pharmaceutical drugs with a silica matrix. Colloids Surfaces B 2013; 103: 422-429.

60. Morais E.C., Correa G.G., Brambilla R. et al. Selective silica-based sorbent materials synthesized by molecular imprinting for adsorption of pharmaceuticals in aqueous matrices. J Separ Sci 2013; 36: 636-643.

61. Mojica E.-R.E., Autschbach J., Bright F.V., Aga D.S. Synthesis and evaluation of tetracycline imprinted xerogels: comparison of experiment and computational modeling. Anal Chim Acta 2011; 684: 72-80.

62. Mojica E.-R.E., Autschbach J., Bright F.V., Aga D.S. Tetracycline spe-ciation during molecular imprinting in xerogels results in class-selective binding. Analyst 2011; 136: 749-755.

63. Заявка КНР 101672820. Thermal polymerization preparation method of tetracycline molecular imprinted polymer membrane electrode. 2010.

64. Заявка КНР 201965114. Instrument for detecting tetracycline concentration in water. 2011.

65. Wang H., Zhao H., Quan X., Chen S. Electrochemical determination of tetracycline using molecularly imprinted polymer modified carbon nanotube-gold nanoparticles electrode. Electroanalysis 2011; 23: 1863-1869.

66. Заявка КНР 102116759. Selective electrode of tetracycline drugs and preparation method thereof. 2011.

67. Guo Z.Y., Gai P.P., Duan J. et al. Tetracycline selective electrode based on molecularly imprinted polymer particles. Chin Chem Lett 2010; 21: 1235-1238.

68. Гай П., Гуо Ж., Янг Ф. и др. Высокочувствительный ион-селектив-ный электрод для определения тетрациклина в образцах воды на основе частиц молекулярно «отпечатанного» полимера. Электрохимия 2011; 47: 1005-1013.

69. Заявка КНР 102116758. Tetracycline drug selective electrode and preparation method thereof. 2011.

70. Guo Z., Gai P., Duan J., Zhang H. Study on highly-sensitive tetracycline selective electrode based on molecular imprinted monolithic column. Chin J Pharm Anal 2010; 30: 1904-1908.

71. Moreira F.T.C., Kamel A.H., Guerreiro J.R.L., Sales M.G.F. Mantailored biomimetic sensor of molecularly imprinted materials for the potentiometric measurement of oxytetracycline. Biosens Bioelectron 2010; 26: 566-574.

72. Guerreiro J.R.L., Freitas V., Sales M.G.F. New sensing materials of molecularly-imprinted polymers for the selective recognition of chlortetracycline. Microchem J 2011; 97: 173-181.

73. Lian W., Huang J., Yu J. et al. A molecularly imprinted sensor based on β-cyclodextrin incorporated multiwalled carbon nanotube and gold nanoparticles-polyamide amine dendrimer nanocomposites combining with water-soluble chitosan derivative for the detection of chlortetracycline. Food Control 2012; 26: 620-627.

74. Wang P., Fu X. F., Li J. et al. Preparation of hydrophilic molecularly imprinted polymers for tetracycline antibiotics recognition. Chin Chem Lett 2011; 22: 611-614.

75. Заявка КНР 101324541. Tetracycline molecular imprinted polymer membrane electrode and preparation and application thereof. 2008.

76. Moreira F.T.C., Guerreiro J.R.L., Azevedo V.L. et al. New biomimetic sensors for the determination of tetracycline in biological samples: Batch and flow mode operations. Anal Methods 2010; 2: 2039-2045.

77. Moreira F.T.C., Kamel A.H., Guerreiro R.L. et al. New potentiometric sensors based on two competitive recognition sites for determining tetracycline residues using flow-through system. Procedia Eng 2010; 5: 1200-1203.

78. W. Lian, S. Liu, J. Yu et al. Determination of oxytetracycline with a gold electrode modified by chitosan-multiwalled carbon nanotube multilayer films and gold nanoparticles. Anal Lett 2013; 46: 1117-1131.

79. Chen Z.-Q., Li J.-P., Li Y.-P. A strategy for constructing sensitive and renewable molecular imprinted carbon paste sensor. Chin J Anal Chem 2011; 39: 1009-1014.

80. Li J., Jiang F., Wei X. Molecularly imprinted sensor based on an enzyme amplifier for ultratrace oxytetracycline determination. Anal Chem 2010; 82: 6074-6078.

81. Li J., Jiang F., Li Y., Chen Z. Fabrication of an oxytetracycline molecular-imprinted sensor based on the competition reaction via a GOD-enzymatic amplifier. Biosens Bioelectron 2011; 26: 2097-2101.

82. Li J., Li Y., Zhang Y., Wei G. Highly sensitive molecularly imprinted electrochemical sensor based on the double amplification by an inorganic Prussian blue catalytic polymer and the enzymatic effect of glucose oxidase. Anal Chem 2012; 84: 1888-1893.

83. Заявка КНР 102621216. Method for detecting trace oxytetracycline with double-amplification-effect molecular imprinting electrochemical sensor. 2012.

84. Wang L.-Q, Lin F.-Y., Yu L.-P. A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food. Analyst 2012; 137: 3502-3509.

85. Lu N., Chen S., Wang H. et al. Synthesis of molecular imprinted polymer modified TiO2 nanotube array electrode and their photoelectrocat-alytic activity. J Solid State Chem 2008; 181: 2852-2858.

86. Huo P., Lu Z, Liu X. et al. Preparation molecular/ions imprinted photocatalysts of La3+@POPD/TiO2/fly-ash cenospheres: Preferential photodegradation of TCs antibiotics. Chem Eng J 2012; 198-199: 73-80.

87. Liu X., Lv P., Yao G. et al. Microwave-assisted synthesis of selective degradation photocatalyst by surface molecular imprinting method for the degradation of tetracycline onto Cl-TiO2. Chem Eng J 2013; 217: 398-406.

88. Wang H., Wu X., Zhao H., Quan X. Enhanced photocatalytic degradation of tetracycline hydrochloride by molecular imprinted film modified TiO2 nanotubes. Chin Sci Bull 2012; 57: 601-605.

89. Jing T., Wang Y., Dai Q. et al. Preparation of mixed-templates molecularly imprinted polymers and investigation of the recognition ability for tetracycline antibiotics. Biosens Bioelectron 2010; 25: 2218-2224.

90. Jing T., Niu J., Xia H. et al. Online coupling of molecularly imprinted solid-phase extraction to HPLC for determination of trace tetracycline antibiotic residues in egg samples. J Separ Sci 2011; 34: 1469-1476.

91. Заявка КНР 101857664. Preparation method of molecular imprinted polymer with specific recognition capability to tetracycline family. 2010.

92. Gong G., Jia L., Li H., Qi X. Preparation and characterization of molecular imprinted polymers of tetracycline antibiotics by mixed-templates. Appl Mech Mater 2012; 128-129: 407-410.

93. Kong J., Wang Y., Nie C. et al. Preparation of magnetic mixed-templates molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and honey samples. Anal Methods 2012; 4: 1005-1011.

94. Заявка КНР 101650335. Molecularly imprinted membrane detecting device for tetracycline and preparation and detection methods thereof. 2010.

95. Заявка КНР 101397355. Method for preparing molecular imprinted polymer capable of identifying oxytetracycline and enrofloxacin. 2009.


Для цитирования:


Яхкинд М.И., Таранцева К.Р., Марынова М.А., Стороженко П.А., Расулов М.М. Молекулярно импринтированные полимеры для пенициллинов и тетрациклинов. Антибиотики и Химиотерапия. 2014;59(5-6):34-40.

For citation:


Yakhkind M.I., Tarantseva K.R., Marynova M.A., Storozhenko P.A., Rasulov M.M. Molecular Imprinted Polymers for Penicillins and Tetracyclines. Antibiotics and Chemotherapy. 2014;59(5-6):34-40. (In Russ.)

Просмотров: 58


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)

  collaborator - эффективное продвижение статьями