Molecular Imprinted Polymers for Macrolides, Aminoglycosides and Some Other Biosynthetic Antibiotics
Abstract
About the Authors
M. I. YakhkindRussian Federation
K. R. Tarantseva
Russian Federation
M. A. Marynova
Russian Federation
P. A. Storozhenko
Russian Federation
M. M. Rasulov
Russian Federation
References
1. Гендриксон О. Д., Жердев А. В., Дзантиев Б. Б. Молекулярно-импринтированные полимеры и их применение в биохимическом анализе. Усп биол хим 2006; 46: 149-192.
2. Лисичкин Г. В., Крутяков Ю. А. Материалы с молекулярными отпечатками: синтез, свойства, применение. Усп хим 2006; 75: 998-1017.
3. Ferndndez-Gonzdlez A., Guardia L., Badfa-Laíño R., Díaz-García M. E. Mimicking molecular receptors for antibiotics - analytical implications. Trends Anal Chem 2006; 25: 949-957.
4. Song S., Wu A., Shi X. et al. Development and application of molecularly imprinted polymers as solid-phase sorbents for erythromycin extraction. Anal Bioanal Chem 2008; 390: 2141-2150.
5. Заявка КНР 101143910. Method of preparing erythromycin molecular imprinted polymer. 2008.
6. Заявка КНР 101148464. Method for purifying erythromycin by using molecular imprinted polymer. 2008.
7. Du X. Y., Peng T., Li J. S., Wang Z. D. Anti-tylosin molecularly imprinted polymers and their application to cleanup of tylosin in bovine plasma samples. Chin J Vet Med 2007; 43: 9: 87-89.
8. Kou X., Geng L., Lei J. et al. Preparation of molecularly imprinted nanoparticles for erythromycin and their adsorption characteristics. Chin J Process Eng 2011; 11: 481-486.
9. Kou X., Lei J., Geng L. et al. Synthesis, characterization and adsorption behavior of molecularly imprinted nanospheres for erythromycin using precipitation polymerization. J Nanosci Nanotechnol 2012; 12: 7388-7394.
10. Заявка КНР 101507916. Preparation method of macrolide antibiotics molecular imprinted polymer microspheres. 2009.
11. Guan P., Hu X., Zhu L. The binding performance of erythromycin imprinted polymeric microspheres. Key Eng. Mater 2012; 501: 263-268.
12. Geng L., Kou X., Lei J. et al. Preparation, characterization and adsorption performance of molecularly imprinted microspheres for erythromycin using suspension polymerization. J Chem Technol Biotechnol 2012; 87: 635-642.
13. Geng L., Kou X., Lei J. et al. Synthesis and evaluation of molecularly imprinted polymer microspheres for erythromycin ethylsuccinate. Ion Exchange Adsorp 2011; 27: 495-501.
14. Siemann M., Andersson L. I., Mosbach K. Separation and detection of macrolide antibiotics by HPLC using macrolide-imprinted synthetic polymers as stationary phases. J Antibiotics 1997; 50: 89-95.
15. Guan P., Hu X., Hao M. Preparation and properties of erythromycin-molecularly imprinted membrane. J Funct Mater 2010; 41: Suppl 2: 379-382.
16. Guan P., Hu X., Zhao Y. Influences of preparative conditions on properties of erythromycin-molecularly imprinted membrane. Adv Mater Res 2010; 87-88: 119-124.
17. Yu J., Hu X., Li D., Jiao C. Thin layer molecularly imprinted composite membranes for selective separation of erythromycin from water. Front Earth Sci China 2009; 3: 480-489.
18. Zhang Z., Yang X., Zhang H. et al. Novel molecularly imprinted polymers based on multi-walled carbon nanotubes with binary functional monomer for the solid-phase extraction of erythromycin from chicken muscle. J Chromatogr B 2011; 879: 1617-1624.
19. Zhang Z., Liu L., Nie L. Preparation of erythromycin-imprinted solidphase extraction material by sol-gel method and the selective adsorption. Acta Polym Sin 2010; 6: 677-683.
20. Zhang Z., Liu Y., Long Y. et al. Effect of the size of molecularly imprinted polymers sensing materials on piezoelectric quartz crystal sensor performance. Anal Sci 2004; 20: 291-295.
21. Lian W., Liu S., Yu J. et al. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens Bioelectron 2012; 38: 163-169.
22. Писарев О. А., Ежова Н. М., Гаркушина И. С. Взаимодействие эритромицина с полимерными сорбентами, «настроенными» на молекулу антибиотика. Журн физ хим 2009; 83: 142-146.
23. Ежова Н. М., Гаркушина И. С., Писарев О. А. Синтез новых гидрофильных полимерных сорбентов, несущих импринт-сайты эритромицина. Сорб хром проц 2011; 11: 828-831.
24. Ежова Н. М., Гаркушина И. С., Писарев О. А. Молекулярно-импринтированные гидрофильные сорбенты для селективной сорбции эритромицина. Прикл биохим микробиол 2011; 47: 694-698.
25. Piletsky S., Piletska E., Karim K. et al. Custom synthesis of molecular imprinted polymers for biotechnological application. Preparation of a polymer selective for tylosin. Anal Chim Acta 2004; 504: 123-130.
26. Заявка КНР 1632563. Streptomycin molecular imprinted solid phase extraction column and preparation process and application thereof. 2005.
27. Yang M., Hou C., Li X. et al. Study on synthesis and characterization of molecularly imprinted polymers of streptomycin by surface imprinting polymerization. Sci Technol Food Ind 2012; 33: 8: 155-158.
28. Morais E. C., Correa G. G., Brambilla R. et al. Silica imprinted materials containing pharmaceuticals as a template: textural aspects. J Sol-Gel Sci Technol 2012; 64: 324-334.
29. Morais E. C., Correa G. G., Brambilla R. et al. The interaction of encapsulated pharmaceutical drugs with a silica matrix. Colloids Surfaces B 2013; 103: 422-429.
30. Morais E. C., Correa G. G., Brambilla R. et al. Selective silica-based sorbent materials synthesized by molecular imprinting for adsorption of pharmaceuticals in aqueous matrices. J Separ Sci 2013; 36: 636-643.
31. Li J., Yang M., Huo D. et al. Molecularly imprinted polymers on the surface of silica microspheres via sol-gel method for the selective extraction of streptomycin in aqueous samples. J Separ Sci 2013; 36: 1142-1148.
32. Hu Y., Zhang Z., Zhang H. et al. Selective and sensitive molecularly imprinted sol-gel film-based electrochemical sensor combining mercaptoacetic acid-modified PbS nanoparticles with Fe3O4@Au-multi-walled carbon nanotubes-chitosan. J Solid State Electrochem 2012; 16: 857-867.
33. Lian W., Xing X., Liu S. A molecularly imprinted sensor for the detection of kanamycin. J Univ Jinan Sci Technol 2012; 26: 348-352.
34. Lian W., Liu S., Yu J. et al. Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan-silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode. Biosens Bioelectron 2013; 44: 70-76.
35. Liu B., Tang D., Zhang B. et al. Au(III)-promoted magnetic molecularly imprinted polymer nanospheres for electrochemical determination of streptomycin residues in food. Biosens Bioelectron 2013; 41: 551-556.
36. Que X., Liu B., Fu L. et al. Molecular imprint for electrochemical detection of streptomycin residues using enzyme signal amplification. Electroanalysis 2013; 25: 531-537.
37. Frasconi M., Tel-Vered R., Riskin M., Willner I. Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functional-ized Au nanoparticle composites. Anal Chem 2010; 82: 2512-2519.
38. Заявка КНР 1667409. Molecular imprinted monolithic separating column for gentamycin, streptomycin and neomycin and preparation process thereof. 2005.
39. Lv Y.-K., Wang L.-M., Yan S.-L. et al. Synthesis and characterization of molecularly imprinted poly(methacrylic acid)/silica hybrid composite materials for selective recognition of lincomycin in aqueous media. J Appl Polym Sci 2012; 126: 1631-1636.
40. Jiang X., Li W., Zhang Y. et al. Preparation and properties of lincomycin A molecular imprinted polymer microspheres. J Wuhan Inst Technol 2012; 34: 5: 16-19.
41. Gutierrez-Fernandez S., Lobo-Castañón M. J., Miranda-Ordieres A. J. et al. Molecularly imprinted polyphosphazene films as recognition element in a voltammetric rifamycin SV sensor. Electroanalysis 2001; 13: 1399-1404.
42. Asanuma H., Akiyama T., Kajiya K. et al. Molecular imprinting of cyclodextrin in water for the recognition of nanometer-scaled guests. Anal Chim Acta 2001; 435: 25-33.
43. Akiyama T., Hishiya T., Asanuma H., Komiyama M. Molecular imprinting of cyclodextrin on silica-gel support for the stationary phase of high-performance-liquid-chromatography. J Incl Phenom Macrocycl Chem 2001; 41: 149-153.
44. Poma A., Guerreiro A., Whitcombe M. J. et al. Solid-phase synthesis of molecularly imprinted polymer nanoparticles with a reusable template - «Plastic antibodies». Adv Funct Mater 2013; 23: 2821-2827.
45. Патент США 7087748 (2006). Process.
46. Yu Y., Ye L., de Biasi V., Mosbach K. Removal of the fermentation byproduct succinyl L-tyrosine from the β-lactamase inhibitor clavulanic acid using a molecularly imprinted polymer. Biotechnol Bioeng 2002; 79: 23-28.
Review
For citations:
Yakhkind M.I., Tarantseva K.R., Marynova M.A., Storozhenko P.A., Rasulov M.M. Molecular Imprinted Polymers for Macrolides, Aminoglycosides and Some Other Biosynthetic Antibiotics. Antibiot Khimioter = Antibiotics and Chemotherapy. 2014;59(7-8):37-40. (In Russ.)