Preview

Антибиотики и Химиотерапия

Расширенный поиск

Прогнозирование развития антибиотикорезистентности бактерий методами фармакокинетико-фармакодинамического моделирования: альтернативные подходы к анализу экспериментальных данных

Полный текст:

Аннотация

Оценка численности мутантов после многократного введения антибиотика (NM) - основной параметр, который используется в исследованиях процессов развития резистентности бактерий с помощью динамических систем in vitro, моделирующих фармакокинетику антибиотиков. С целью сравнения NM с недавно предложенным интегральным параметром AUBCM (площадь под кривой «численность мутантов - время») проведён анализ процессов селекции Staphylococcus aureus при моделировании in vitro режимов моно- (даптомицин, доксициклин) и комбинированной (даптомицин + рифампицин, рифампицин + линезолид) терапии. Различия в кинетических кривых изменения численности резистентных мутантов S.aureus удалось выразить параметром AUBCM, но не NM. Кроме того, в отличие от AUBCM параметр NM не позволял отразить очевидные различия в кинетических кривых изменения численности мутантов, резистентных к 2-, 4-, 8- и 16-кратному показателю МПК доксициклина и рифампицина. Полученные результаты свидетельствуют о преимуществах AUBCM перед NM при количественной оценке селекции резистентных мутантов.

Об авторах

М. В. Голикова
НИИ по изысканию новых антибиотиков им. Г.Ф. Гаузе
Россия


Е. Н. Струкова
НИИ по изысканию новых антибиотиков им. Г.Ф. Гаузе
Россия


Ю. А. Портной
НИИ по изысканию новых антибиотиков им. Г.Ф. Гаузе
Россия


А. А. Фирсов
НИИ по изысканию новых антибиотиков им. Г.Ф. Гаузе
Россия


Список литературы

1. Фирсов A.A., Назаров А.Д., Черных В.М. Фармакокинетические подходы к оптимизации антибиотикотерапии. Итоги науки и техники. ВИНИТИ, М.: 1989; 17: 1-228

2. Firsov A.A., Zinner S.H., Lubenko I.Y. In vitro dynamic models as tools to predict antibiotic pharmacodynamics. In: Nightingale C.H., Ambrose P.G., Drusano G.L., Murakawa T. (Ed.). Antimicrobial pharmacodynamics in theory and clinical practice. 2nd ed, section II, Non-clinical models of infection. Informa Healthcare USA 2007; 45-78.

3. Firsov A.A., Vostrov S.N., Lubenko I.Y. et al. In vitro pharmacodynamic evaluation of the mutant selection window hypothesis using four fluoroquinolones against Staphylococcus aureus. Antimicrob Agents Chemother 2003; 47: 1604-1613.

4. Blondeau J.M., Hansen G., Metzler K., Hedlin P. The role of PK/PD parameters to avoid selection and increase of resistance: mutant prevention concentration. J Chemother 2004; 16 (Suppl 3): 1-19.

5. Firsov A.A., Vostrov S.N., Lubenko I.Y. et al. ABT492 and levofloxacin: comparison of their pharmacodynamics and their abilities to prevent selection of resistant Staphylococcus aureus in an in vitro dynamic model. J Antimicrob Chemother 2004; 54: 178-186.

6. Firsov A.A., Smirnova M.V., Strukova E.N. et al. Enrichment of resistant Staphylococcus aureus at ciprofloxacin concentrations simulated within the mutant selection window: bolus versus continuous infusion. Int J Antimicrob Agents 2008; 32: 488-493.

7. Firsov A.A., Strukova E.N., Shlykova D.S. et al. Bacterial resistance studies using in vitro dynamic models: the predictive power of the mutant prevention and minimum inhibitory antibiotic concentrations. Antimicrob Agents Chemother 2013; 57: 4956-4962.

8. Firsov A.A., Portnoy Y.A., Strukova E.N. et al. Predicting bacterial resistance using the time inside the mutant selection window: possibilities and limitations. Int J Antimicrob Agents 2014; 44: 301-305.

9. Firsov A.A., Strukova E.N., Portnoy Y.A. et al. Bacterial antibiotic resistance studies using in vitro dynamic models: Population analysis vs. susceptibility testing as endpoints of mutant enrichment. Int J Antimicrob Agents 2015; 46: 313-318.

10. MacGowan A.P., Rogers C.A., Holt H.A., Bowker K.E. Activities of moxifloxacin against, and emergence of resistance in, Streptococcus pneumoniae and Pseudomonas aeruginosa in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 2003; 47: 1088-1095.

11. Zinner S.H., Lubenko I.Y., Gilbert D. et al. Emergence of resistant Streptococcus pneumoniae in an in vitro dynamic model that simulates moxifloxacin concentrations inside and outside the mutant selection window: related changes in susceptibility, resistance frequency and bacterial killing. J Antimicrob Chemother 2003; 52: 616-622.

12. Oonishi Y., Mitsuyama O., Yamaguchi K. Effect of GrlA mutation on the development of quinolone resistance in Staphylococcus aureus in an in vitro pharmacokinetic model. J Antimicrob Chemother 2007; 60: 1030-1037.

13. Tam V.H., Louie A., Deziel M.R. et al. The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: a new paradigm for optimizing pharmacodynamics to counterselect resistance. Antimicrob Agents Chemother 2007; 51: 744-747.

14. Liang B., Bai N., Cai Y. et al. Mutant prevention concentration-based pharmacokinetic/pharmacodynamic indices as dosing targets for suppressing the enrichment of levofloxacin-resistant subpopulations of Staphylococcus aureus. Antimicrob. Agents Chemother 2011; 55: 2409-2412.

15. Gebru E., Choi M.-J., Lee S.-J. et al. Mutant-prevention concentration and mechanism of resistance in clinical isolates and enrofloxacin / marbofloxacin-selected mutants of Escherichia coli of canine origin. J Med Microbiol 2011; 60: 1512-1522.

16. Firsov A.A., Smirnova M.V., Lubenko I.Y. et al. Testing the mutant selection window hypothesis with Staphylococcus aureus exposed to daptomycin and vancomycin in an in vitro dynamic model. J Antimicrob Chemother 2006; 58: 1185-1192.

17. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard. Eighth Edition. CLSI document M-07-08, Clinical and Laboratory Standards Institute; 2009.

18. Moellering R.C. Jr. A novel antimicrobial agent joins the battle against resistant bacteria. Ann Intern Med 1999; 130: 155-157.

19. Agwuh K., MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 2006; 58: 256-265.

20. Jaakkola T., Backman J.T., Neuvonen M. et al. Effect of rifampicin on the pharmacokinetics of pioglitazone. Br J Clin Pharmacol 2006; 61: 70-78.

21. Woodworth J.R., Nyhart E.H., Jr., Brier G.L. et al. Single-dose pharmacokinetics and antibacterial activity of daptomycin, a new lipopeptide antibiotic, in healthy volunteers. Antimicrob Agents Chemother 1992; 36: 318-325.

22. Firsov A.A., Golikova M.V., Strukova E.N. et al. In vitro resistance studies with bacteria that exhibit low mutation frequencies: prediction of «antimutant» linezolid concentrations using a mixed inoculum containing both susceptible and resistant Staphylococcus aureus. Antimicrob Agents Chemother 2015; 59: 1014-1019.

23. Blaser J., Stone B.B., Zinner S.H. Two compartment kinetic model with multiple artificial capillary units. J Antimicrob Chemother 1985; 15: Suppl A: 131-137.

24. Smirnova M.V., Strukova E.N., Portnoy Y.A. et al. Linezolid pharmacodynamics with Staphylococcus aureus, alone and in 2 combination with doxy-cycline in an in vitro dynamic model. J Chemother 2011; 23: 140-144.

25. Firsov A.A., Vostrov S.N., Shevchenko A.A., Cornaglia G. Parameters of bacterial killing and regrowth kinetics and antimicrobial effect examined in terms of area under the concentration-time curve relationships: action of ciprofloxacin against Escherichia coli in an in vitro dynamic model. Antimicrob Agents Chemother 1997; 41: 1281-1287.

26. Firsov A.A., Lubenko I.Y., Portnoy Y.A. et al. Relationships of the area under the curve/MIC ratio to different endpoints of the antimicrobial effect: gemifloxacin pharmacodynamics in an in vitro dynamic model. Antimicrob Agents Chemother 2001; 45: 927-931.

27. Firsov A.A., Zinner S.H., Vostrov S.N. et al. AUC/MIC relationships to different endpoints of the antimicrobial effect: multiple-dose in vitro simulations with moxifloxacin and levofloxacin. J Antimicrob Chemother 2002; 50: 533-539.


Для цитирования:


Голикова М.В., Струкова Е.Н., Портной Ю.А., Фирсов А.А. Прогнозирование развития антибиотикорезистентности бактерий методами фармакокинетико-фармакодинамического моделирования: альтернативные подходы к анализу экспериментальных данных. Антибиотики и Химиотерапия. 2015;60(9-10):12-16.

For citation:


Golikova M.V., Strukova E.N., Portnoy Y.A., Firsov A.A. PK/PD Modeling as a Tool for Predicting Bacterial Resistance to Antibiotics: Alternative Analyses of Experimental Data. Antibiotics and Chemotherapy. 2015;60(9-10):12-16. (In Russ.)

Просмотров: 40


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)