Preview

Антибиотики и Химиотерапия

Расширенный поиск

Антиоксиданты как потенциальные противовирусные препараты при флавивирусных инфекциях

Полный текст:

Аннотация

В обзоре рассматриваются потенциальные возможности определённых антиоксидантов как противовирусных агентов при флавивирусных инфекциях. В настоящее время флавивирусные инфекции представляют существенную проблему для здравоохранения в различных частях мира, поскольку приводят к высокой заболеваемости и летальным исходам. Окислительный стресс, индуцированный вирусами, в том числе и флавивирусами, включает не только вмешательство в ведущие метаболические процессы организма, но и регулирует репликацию вируса. Показан широкий спектр противовирусной активности природных фенольных антиоксидантов - розмариновой кислоты и лютеолина - компонентов полифенольного комплекса, выделенного из морских трав семейства Zosteraceae. Противовирусная активность розмариновой кислоты и лютеолина обусловлена их высоким антиоксидантным, противовоспалительным и нейропротективным потенциалом. Особое внимание уделено анализу активности полифенольного комплекса и его компонентов в отношении вируса клещевого энцефалита (КЭ). Противовирусные свойства этих соединений, обладающих широким спектром биологического действия, позволяют рассматривать их как перспективных кандидатов для комплексной терапии КЭ.

Об авторах

Н. В. Крылова
НИИ эпидемиологии и микробиологии им. Г. П. Сомова
Россия


А. М. Попов
Тихоокеанский институт биоорганической химии им. Г. Б. Елякова, Дальневосточное отделение РАН; Дальневосточный Федеральный Университет
Россия


Г. Н. Леонова
НИИ эпидемиологии и микробиологии им. Г. П. Сомова
Россия


Список литературы

1. Lindenbach B.D., Thiel H.J., Rice C.M. Flaviviridaea: the viruses and their replication. In: Knipe D.M., Howley P.M. (Eds.) Fields Virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007; 1101-1152.

2. Valyi-Nagy T., Dermody T.S. Role of oxidative damage in the pathogenesis of viral infections ofthe nervous system. Histol Histopathol 2005; 20: 957-967.

3. Firuzi O., Miri R., Tavakkoli M., Saso L. Antioxidant therapy: current status and future prospects. Curr. Med. Chem. 2011; 18: 3871-3888.

4. Giustarini D., Dalle-Donne I., Tsikas D., Rossi R. Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci 2009; 46: 5-6: 241-281.

5. Ibeh B.O., Emeka-Nwabunnia I.K. Increased oxidative stress condition found in different stages of HIV disease in patients undergoing antiretroviral therapy in Umuahia (Nigeria). Immunopharmacol. Immunotoxicol 2012; 34: 1060-1066.

6. Lee Y.H., Lai C.L., Hsieh S.H., Shieh C.C., Huang L.M. et al. Influenza A virus induction of oxidative stress and MMP-9 is associated with severe lung pathology in a mouse model. Virus Res 2013; 178: 411-422.

7. Garofalo R.P., Kolli D., Casola A. Respiratory syncytial virus infection: mechanisms of redox control and novel therapeutic opportunities. Antiox Redox Signal 2013; 18: 186-217.

8. Paracha U.Z, Fatima K., Alqahtani M., Chaudhary A., Abuzenadah A. et al. Oxidative stress and hepatitis C virus. Virol J 2013; 10: 251-260.

9. Srivastava R., Kalita J., Khan M.Y., Misra U.K. Free radical generation by neurons in rat model of Japanese encephalitis. Neurochem Res 2009; 34: 2141-2146.

10. Castro R., Pinzon H.S, Alvis-Guzman N. A systematic review of observational studies on oxidative/nitrosative stress involvement in dengue pathogenesis. Colomb Med 2015; 46: 3: 135-143.

11. Захарычева Т.А., Ковальский Ю.Г., Лебедько О.А., Мжельская Т.В. Оксидативный стресс у больных клещевым энцефалитом на Дальнем Востоке Российской Федерации. Дальневост журн инфекц патол 2012; 20: 41-45. / Zaharycheva T.A., Koval'skij Ju.G., Lebed'ko O.A., Mzhel'skaja T.V. Oksidativnyj stress u bol'nyh kleshhevym jencefalitom na Dal'nem Vostoke Rossijskoj Federacii. Dal'nevost zhurn infekc patol 2012; 20: 41-45. [in Russian]

12. Reshi M.L, Su Y.-C., Hong J.-R. RNA viruses: ROS-mediated cell death. Int J Cell Biol 2014; ID 467452: 16.

13. Dasuri K., Zhang L., Keller J.N. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med 2012; 62: 170-185.

14. Shrestha B, Gottlieb D., Diamond M.S. Infection and injury of neurons by West Nile encephalitis virus. J Virol 2003; 77: 13203-13213.

15. Palus M., Bi’ly’T., Elsterova’ J., Langhansova’ H., Sala’t J. et al. Infection and injury of human astrocytes by tick-borne encephalitis virus. J Gen Virol 2014; 95: 2411-2426.

16. Chen T.-H., Tang P., Yang C.-F., Kao L.-H., Lo Y.-P., Chuang C.-K. et al. Antioxidant defense is one of the mechanisms by which mosquito cells survive dengue 2 viral infection. Virology 2011; 410: 410-417.

17. Pan X., Zhou G., Wu J., Bian G., Lu P., Raikhel A.S. et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Nat Acad Sci U.S.A. 2012; 109: 23-31.

18. Gullberg R.C., Steel J.J., Moon S.L., Soltani E., Geiss B.J. Oxidative stress influences positive strand RNA virus genome synthesis and capping. Virology 2015; 475: 219-229.

19. Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin. Interv. Aging 2007; 2: 219-236.

20. Kumar S., Misra U.K., Kalita J., Khanna V.K., Khan M.Y. Imbalance in oxidant/antioxidant system in different brain regions of rat after the infection of Japanese encephalitis virus. Neurochem Int 2009; 55: 648-654.

21. Chandrasena L.G., Peiris H., Kamani J., Wanigasuriya P., Jayaratne S.D., Wijayasiri W.A.A. et al. Antioxidants in patients with Dengue viral infection. Southeast Asian. J Trop Med Public Health 2014; 45: 5: 1015-1022.

22. Tian Y., Jiang W., Gao N., Zhang J., Chen W., Fan D. et al. Inhibitory effects of glutathione on dengue virus production. Biochem Biophys Res Communic 2010; 397: 420-424.

23. Verma S., Molina Y., Lo Y.Y., Cropp B., Nakano C., Yanagihara R. et al. In vitro effects of selenium deficiency on West Nile virus replication and cytopathogenicity. Virol J 2008; 5: 66-79.

24. Ковальский Ю.Г., Лебедько О.А., Захарычева Т.А., Сенькевич О.А., Мжельская Т.В., Сапунцова С.П. и др. Содержание селена и состояние антиоксидантной системы у больных клещевым энцефалитом на Дальнем Востоке Российской Федерации. Дальневост журн инфекц патол 2013; 22: 18-22. [in Russian]

25. Zhang Y., Wang Z., Chen H., Chen Z., Tian Y. Antioxidants: potential antiviral agents for Japanese encephalitis virus infection. Int J Infect Dis 2014; 24: 30-36.

26. Michaelis M., Kleinschmidt M.C., Doerr H.W., Jr J.C. Minocycline inhibits West Nile virus replication and apoptosis in human neuronal cells. J Antimicrob Chemother 2007; 60: 981-986.

27. Zandi K., Teoh B.-T., Sam S.-S., Wong P.-F., Mustafa M.R., AbuBakar S. In vitro antiviral activity of fisetin, rutin and naringenin against dengue virus type-2. J Med.Plants Res 2011; 5: 5534-5539.

28. Zandi K., Teoh B.-T., Sam S.-S., Wong P.-F., Mustafa M.R., Abu Bakar S. Novel antiviral activity of baicalein against dengue virus. BMC Complementary and Alternative Med 2012; 12: 214-223.

29. Muhamad M., Kee L.Y., Rahman N.A., Yusof R. Antiviral actions of flavanoid-derived compounds on dengue virus type-2. Int J Biol Sci 2010; 6: 294-302.

30. Calland N., Dubuisson J., Rouillé Y., Séron K. Hepatitis C virus and natural compounds: a new antiviral approach? Viruses 2012; 4: 2197-2217.

31. Balakrishnan D., Kandasamy D., Nithyanand P. A review on antioxidant activity of marine organisms. Int. J. Chem. Tech. Res. 2014; 6: 7: 3431-3436.

32. Попов А.М., Артюков А.А., Кривошапко О.Н., Крылова Н.В., Леонова Г.H., Козловская Э.П. Средство, обладающее антиоксидантным, кардиопротекторным, противодиабетическим, противовоспалительным, гепатопротекторным, противоопухолевым и противовирусным действием. Патент РФ С1 2432959; 2011.

33. Lopez-Lazaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem 2009; 9: 1: 31-59.

34. Funakoshi-Tago M., Nakamura K., Tago K., Mashino T., Kasahara T. Anti-inflammatory activity of structurally related flavonoids, apigenin, luteolin and fisetin. Int. Immunopharmacol. 2011; 1: 9: 1150-1159.

35. Francisco V., Figueirinha A., Costa G., Liberal J., Lopes M.C., Garcfa-Rodrfguez C. et al. Chemical characterization and anti-inflammatory activity of luteolin glycosides isolated from lemongrass. J Functional Foods 2014; 10: 436-443.

36. Zhang Y., Chen X., Yang L., Zu Y., Lu Q. Effects of rosmarinic acid on liver and kidney antioxidant enzymes, lipid peroxidation and tissue ultrastructure in aging mice. Food Funct 2015; 6: 3: 927-931.

37. Попов А.М., Кривошапко О.Н., ОсиповА.Н., Корепанова Е.А. Антиоксидантная и мембранотропная активность розмариновой кислоты. Вопр питания 2014; 3: 25-31. / Popov A.M., Krivoshapko O.N., Osipov A.N., Korepanova E.A. Antioksidantnaja i membranotropnaja aktivnost' rozmarinovoj kisloty. Vopr pitanija 2014; 3: 25-31. [in Russian]

38. Zhang Y.C., Gan F.F., Shelar S.B., Ng K.Y., Chew E.H. Antioxidant and Nrf2 inducing activities of luteolin, a flavonoid constituent in Ixeris sonchi-folia Hance, provide neuroprotective effects against ischemia-induced cellular injury. Food Chem Toxicology 2013; 59: 272-280.

39. Braidy N., Matin A., Rossi F., Chinain M., Laurent D., Guillemin G.J. Neuroprotective effects of rosmarinic acid on ciguatoxin in primary human neurons. Neurotox Res 2014; 25: 2: 226-234.

40. Kelsey N.A., Wilkins H.M., Linseman D.A. Nutraceutical antioxidants as novel neuroprotective agents. Molecules 2010; 15: 7792-7814.

41. Astani A., Reichling J., Schnitzler P. Melissa officinalis extract inhibits attachment of Herpes simplex virus in vitro. Chemotherapy 2012; 58: 1: 70-77.

42. Xu Z.S., Chou G.X, Wang Z.T. A new luteolin triglycoside from Ficus ischnopoda leaves. Nat Prod Res 2014; 28: 14: 1052-1057.

43. Cao H.J., Tan R.R., He R.R., Tang L.P., Wang X.L., Yao N. et al. Sarcandra glabra extract reduces the susceptibility and severity of influenza in restraint-stressed mice. Evidence-Based Complementary and Alternative Medicine. 2012; ID 236539, 12.

44. Liu A.L., Liu B, Qin H.L., Lee S.M., Wang Y.T., Du G.H. Anti-influenza virus activities of flavonoids from the medicinal plant Elsholtzia rugulosa. Planta Med 2008; 74: 8: 847-851.

45. Dubois M., Bailly F., Mbemba G., Mouscadet J.F., Debyser Z., Witvrouw, M. et al. Reaction of rosmarinic acid with nitrite ions in acidic conditions: discovery of nitro- and dinitrorosmarinic acids as new anti-HIV-1 agents. J Med Chem 2008; 51: 2575-2579.

46. Mehla R., Bivalkar-Mehla S., Chauhan A. A flavonoid, luteolin, cripples HIV-1 by abrogation of tat function. PLoS One 2011; 6: 11: e27915.

47. Chung Y.C., Hsieh F.C., Lin Y.J., Wu T.Y., Lin C.W., Lin C.T. et al. Magnesium lithospermate B and rosmarinic acid, two compounds present in Salvia miltiorrhiza, have potent antiviral activity against enterovirus 71 infections. Eur J Pharmacol 2015; 755: 127-133.

48. Lv X., Qiu M., Chen D., Zheng N., Jin Y., Wu Z. Apigenin inhibits enterovirus 71 replication through suppressing viral IRES activity and modulating cellular JNK pathway. Antiviral Res 2014; 109: 30-41.

49. Cherry J.J., Rietz A., Malinkevich A., Liu Y., Xie M., Bartolowits M. et al. Structure based identification and characterization of flavonoids that disrupt human papillomavirus-16 E6 function. PLoS One 2013; 8: 12: e84506.

50. Knipping K., Garssen J., van't Land B. An evaluation of the inhibitory effects against rotavirus infection of edible plant extracts. Virol J 2012; 9: 137-145.

51. Yi L., Li Z, Yuan K., Qu X., Chen J., Wang G. et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 2004; 78: 20: 11334-11339.

52. Liu M.M., Zhou L., He P.L., Zhang Y.N., Zhou J.Y., Shen Q. et al. Discovery of flavonoid derivatives as anti-HCV agents via pharmacophore search combining molecular docking strategy. Eur J Med Chem 2012; 52: 33-43.

53. Swarup V., Ghosh J., Ghosh S., Saxena A., Basu A. Antiviral and antiinflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob Agents Chemother 2007; 51: 9: 3367-3370.

54. Крымова Н.В., Леонова Г.Н., Майстровская О.С., Попов А.М., Артюков А.А., Козловская Э.П. Изучение активности препарата Люромарин in vitro в отношении вируса клещевого энцефалита. Антибиотики и химиотерапия. 2010; 55: 7-8: 17-19

55. Крымова Н.В., Попов А.М., Леонова Г.Н., Артюков А.А., Майстровская О.С. Сравнительное изучение противовирусной активности лютеолина и 7, 3’-дисульфата лютеолина. Антибиотики и химиотер 2011; 56: 11-12: 7-10

56. Крымова Н.В., Леонова Г.Н., Попов А.М., Артюков А.А., Козловская Э.П. Изучение эффективности препарата Люромарин при экспериментальном клещевом энцефалите у мышей. Антибиотики и химиотер 2011; 56: 7-8: 13-15

57. Lee J., Jung E., Kim Y., Lee J., Park J., Hong S., et al. Rosmarinic acid as a downstream inhibitor of IKK-beta in TNF-alpha-induced upregulation of CCL11 and CCR3. Br J Pharmacol 2006; 148: 366-375

58. Parker W.B. Metabolism and antiviral activity of ribavirin. Virus Res 2005; 107: 165-171


Для цитирования:


Крылова Н.В., Попов А.М., Леонова Г.Н. Антиоксиданты как потенциальные противовирусные препараты при флавивирусных инфекциях. Антибиотики и Химиотерапия. 2016;61(5-6):25-31.

For citation:


Krylova N.V., Popov A.M., Leonova G.N. Antioxidants as Potential Antiviral Agents for Flavivirus Infections. Antibiotics and Chemotherapy. 2016;61(5-6):25-31. (In Russ.)

Просмотров: 59


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)