Preview

Антибиотики и Химиотерапия

Расширенный поиск

Перспективные стратегии поиска новых средств борьбы с инфекционными заболеваниями

Полный текст:

Аннотация

Возрастающая резистентность микроорганизмов к антибиотикам в последнее время перестаёт быть исключительно медицинской проблемой. Она затрагивает всё более широкий круг социально-экономических аспектов мирового сообщества и, достигнув высокого уровня, перерастает в глобальную угрозу здоровью населения планеты. В процессе эволюции бактерии выработали ряд эффективных стратегий защиты от антимикробных препаратов. Это обуславливает первостепенное значение разработки перспективных стратегий поиска альтернативных стратегий борьбы с инфекционными заболеваниями. В обзоре авторы обсуждают и анализируют несколько направлений поиска новых средств, потенциально способных стать альтернативой традиционной антибиотикотерапии.

Об авторах

Б. Г. Андрюков
НИИ эпидемиологии и микробиологии им. Г. П. Сомова
Россия


Т. С. Запорожец
НИИ эпидемиологии и микробиологии им. Г. П. Сомова
Россия


Н. Н. Беседнова
НИИ эпидемиологии и микробиологии им. Г. П. Сомова
Россия


Список литературы

1. Nitsch-Osuch A., Gyrczuk E., Wardyn A. et al. Antibiotic prescription practices among children with. Adv Exp Med Biol 2016; 905: 25-31.

2. Liu J.-H., Shen J. Emergence ofplasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016; 16 (2): 161-168.

3. Mills S., Ross R.P., Hill C. Bacteriocins and bacteriophage; a narrowminded approach to food and gut microbiology. FEMS Microbiol Rev 2017; 41: S129-S153.

4. Behrens H.M., Six A., Walker D., Kleanthous C. The therapeutic potential of bacteriocins as protein antibiotics. Emerging Topics in Life Sciences 2017; 1 (1): 65-74.

5. Carlet J., Mainardi J.L. Antibacterial agents: back to the future. Can we live with only colistin, co-trimoxazole and fosfomycin? Clin Microbiol Infect 2012; 18 (1): 1-3.

6. Одинцов В.Е., Стерликов С.А. Лекарственно-устойчивый туберкулез в пенитенциарных учреждениях. Медицинский альянс. 2013; 1: 68-73

7. Piddock L.V. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol 2006; 19 (2): 382-402.

8. Lee H., Kim H.Y. Lantibiotics, class I bactiriocins from the genus Bacillus J Microbiol Biotechnol 2011; 21 (3): 229-235.

9. Rouveix B. Clinical implications of multiple drug resistance efflux pumps of pathogenic bacteria. J Antimicrob Chemother 2007; 59 (6): 1208-1209.

10. Stavri M., Piddock L.J., Gibbons S. Bacterial efflux pumps from natural sources. J Antimicrob Chemother 2007; 59 (6): 1247-1260.

11. Rang H.P., Dale M.M., Ritter J.M. et al. Rang & Dale's Pharmacology, 7th ed. Elsevier, Churchill Livingstone 2012.

12. Romanelli R.M., Clemente W.T., Lima S.S. et al. MRSA outbreak at a transplantation unit. Braz J Infect Dis 2010; 14 (1): 54-59.

13. Wardal E., Sadowy E., Hryniewicz W. Complex nature of enterococcal pheromone-responsive plasmids. Pol J Microbiol 2010; 59 (2): 79-87.

14. Martfnez-Julvez M., Rojas A.L., Olekhnovich I. et al. Structure of RdxA: an oxygen insensitive nitroreductase essential for metronidazole activation in Helicobacter pylori. J Fed Eur Biochem Soc 2012; 279: 43064317.

15. Ojala V., Laitalainen J., Jalasvuori M. Fight evolution with evolution: plasmid-dependent phages with a wide host range prevent the spread of antibiotic resistance. Evol Appl 2013; 6 (6): 925-932.

16. WHO. Antimicrobial Resistance 2015, Available online at www.who.int.

17. Abhilash M., Vidya A. G., Jagadevi T. Bacteriophage therapy: a war against antibiotic resistant bacteria. Internet J Altern Med 2009; 7 (1): e17744.

18. Hagens S., Loessner M.J. Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr. Pharm. Biotechnol. 2010; 11 (1): 58-68.

19. Sulakvelidze A., Alavidze Z., Morrais J. Bacteriophage therapy. Antimicrob Agents Chemother 2001; 45 (3): 649-659.

20. Borysowski J., Weber-Dabrowska B., Gorski A. Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med 2006; 231 (4): 366-377.

21. Chanishvili N. Phage Therapy-History from Twort and d'Herelle Through Soviet Experience to Current Approaches. Literature Review 2012; 778: 12-22. doi: 10.1016/B978-0-12-394438-2.00001-3.

22. Hyman P., Abedon S.T. Bacteriophage host range and bacterial resistance. In: Laskin, A.I., Sariaslani, S., Gadd, G.M. (Eds.), Advances in Applied Microbiology, vol. 70. Elsevier Academic Press Inc., San Diego, 2010; 217-248.

23. Wittebole X., de Roock S., Opal S.M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 2013; 4 (8): 1-10.

24. Maura D., Debarbieux L. Bacteriophages as twenty-first century antibacterial tools for food and medicine. Appl. Microbiol. Biotechnol 2011; 90 (3): 851-859.

25. Chan B.K., Abedon S.T. Phage therapy pharmacology phage cocktails. In: Laskin, A.I., Sariaslani, S., Gadd, G.M. (Eds.), Advances in Applied Microbiology, vol. 78. Elsevier Academic Press Inc., San Diego, 2012; 1-23.

26. Edgar R., Friedman N., Molshanski-Mor S. et al. Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Appl Environ Microbiol 2012; 78 (3): 744-751.

27. Schmelcher M., Powell A.M., Becker S.C. et al. Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol 2012; 78 (7): 2297-2305.

28. Schuch R., Pelzek A.J., Raz A. et al. Use of a bacteriophage lysin to identify a novel target for antimicrobial development. PLoS One 2013; 8 (4): e60754.

29. McGowan S., Buckle A.M., Mitchell M.S. et al. X-ray crystal structure of the streptococcal specific phage lysin PlyC. Proc Natl Acad Sci USA 2012; 109 (31): 12752-12757.

30. Daniel A., Euler C., Collin M. et al. Synergism between a novel chimerical lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2010; 54 (4): 1603-1612.

31. Viertel T.M., Ritter K., Horz H.-P. Viruses versus bacteria - novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J Antimicrob Chemother 2014; 69 (9): 2326-2336.

32. Wernicki A., Nowaczek A., Urban-Chmiel R. Bacteriophage therapy to combat bacterial infections in poultry. Virol J 2017; 14 (1): 179.

33. Pirnay J., Verbeken G., Rose T. et al. Introducing yesterday's phage therapy in today's medicine. Future Virol 2012; 7 (4): 379-390.

34. Atterbury R.J. Bacteriophage biocontrol in animals and meat products. Microb Biotechnol 2009; 2 (6): 601-612. doi: 10.1111/j. 17517915.2009.00089.

35. Ackermann H.W. 5500 Phages examined in the electron microscope. Arch Virol 2007;152 (2): 227-243. doi: 10.1128/JVI.02727-12.

36. Summers W.C. The strange history of phage therapy. Bacteriophage 2012; 2 (2): 130-133.

37. Sulakvelidze A., Alavidze Z., Morris J.G.J. Bacteriophage therapy. Antimicrob Agents Chemother 2001; 45 (3): 649-659.

38. Tamaki H., Zhang R., Angly F.E. et al. Metagenomic analysis of DNA viruses in a wastewater treatment plant in tropical climate. Environ Microbiol 2012; 14 (2): 441-452.

39. Abedon S.T., Kuhl S.J., Blasdel B.G. et al. Phage treatment of human infections. Bacteriophage 2011; 1 (2): 66-85. doi: 10.1016/j.tibtech.2010.08.001.

40. Potera C. Phage renaissance: new hope against antibiotic resistance. Environ Health Perspect 2013; 121 (2): 48-53.

41. Balogh B., Jones J.B., Iriarte F.B. et al. Phage therapy for plant disease control. Curr Pharm Biotechnol 2010; 11 (1): 48-57.

42. Fenton M., Ross P., McAuliffe O. et al. Recombinant bacteriophage lysins as antibacterial. Bioeng Bugs 2010: 1 (1); 9-16.

43. Kutateladze M. Experience of the Eliava Institute in bacteriophage therapy. Virol Sin 2015; 30: 80-81. doi: 10.1007/s12250-014-3557-0.

44. Kawada-Matsuo M., Yoshida Y., Zendo T. et al. Three distinct two-component systems are involved in resistance to the class I bacteriocins, nukacin ISK-1 and nisin A in Staphylococcus aureus. PLoS One 2013; 8 (7): e69455.

45. Rodriguez-Rubio L., Martinez B., Rodriguez A. et al. The phage lytic proteins from the Staphylococcus aureus bacteriophage vB SauS-phiIPLA88 display multiple active catalytic domains and do not trigger staphylococcal resistance. PLoS One 2013; 8 (5): e64671, doi: 10.1371/journal.pone.0064671.

46. Nishie M., Nagao J., Sonomoto K. Antibacterial peptides «bacteriocins»: an overview of their diverse characteristics and applications. Biocontrol Sci 2012; 17 (1): 1-16.

47. Sao-José C. Phage endolysins with broad antimicrobial activity against Enterococcus faecalis clinical strains. Microbial Drug Resist 2012; 18 (3): 322-332.

48. Gratia J.P. Andre Gratia: a forerunner in microbial and viral genetics. Genetics 2000; 156 (2): 471-476.

49. Bodaszewska-Lubas M., Brzychczy-Wloch M., Gosiewski T., Heczko P.B. Antibacterial activity of selected standard strains of lactic acid bacteria producing bacteriocins-pilot study. Postepy Hig Med Dosw 2012; 66: 787-794.

50. Alvarez-Sieiro P., Montalban-Lopez M., Mu D. et al. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biot 2016; 100: 2939-2951. doi: 10.1007/s00253-016-7343-9.

51. Mathur H., Field D., Rea M.C. et al. Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Front Microbiol 2017; 8: 1205. doi: 10.3389/fmicb.2017.01205.

52. Oldfield E., Feng X. Resistance-resistant antibiotics. Trends Pharmacol Sci 2014; 35 (12): 664-674.

53. Bruhn O., Grötzinger J., Cascorbi I. et al. Antimicrobial peptides and proteins of the horse - insights into a well-armed organism. Vet Res 2011; 42 (1): 98-119.

54. Björn C., Häkansson J., Myhrman E. et al. Anti-infectious and antiinflammatory effects of peptide fragments sequentially derived from the antimicrobial peptide centrocin 1 isolated from the green sea urchin, Strongylocentrotus droebachiensis. AMB Express 2012; 2 (1): 67-78.

55. Lohans C.T., Vederas J.C. Development of class IIa bacteriocins as therapeutic agents. Int J Microbiol. 2012; 2012: 386410. doi: 10.1155/2012/386410.

56. Nakatsuji T., Gallo R.L. Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol 2012; 132 (3): 887-895.

57. Brand A.M., Kwaadsteniet M., Dicks L.M. The ability of nisin F to control Staphylococcus aureus infection in the peritoneal cavity, as studied in mice. Lett Appl Microbiol 2010; 51 (6): 645-649.

58. Desriac F., Defer D., Bourgougnon N., Brillet B., Le Chevalier P., Fleury Y. Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquaculture probiotic. Mar Drugs 2010; 8 (4): 1153-1177.

59. Fernandez L., Delgado S., Herrero H., Maldonado A., Rodriguez J.M. The bacteriocin nisin, an effective agent for the treatment of staphylococcal mastitis during lactation. J Hum Lact 2008; 24 (3): 311-316. doi: 10.1177/0890334408317435.

60. Huang E., Zhang L., Chung Y., Zheng Z., Yousef A.E. Characterization and application of enterocin RM6, a bacteriocin from Enterococcus faecalls. BioMed Res Int 2013; 2013: 206917. doi: 10.1155/2013/206917.

61. Ianiro G., Tilg H. Gasbarrini A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 2016; 65(11): 1906-1915. doi: 10.1136/gutjnl-2016-312297.

62. Fernebro J. Fighting bacterial infections - future treatment options. Drug Resist Updat 2011; 14 (2): 125-139.

63. Ferrer M., Mendez-Garcfa C., Rojo D. et al. Antibiotic use and microbiome function. Biochem Pharmacol 2016; doi: 10.1016/j.bcp.2016.09.007.

64. Gillor O., Nigro L.M., Riley M.A. Genetically engineered bacteriocins and their potential as the next generation of antimicrobials. Curr Pharm Des 2005; 11 (8): 1067-1075.

65. Amer L.S., Bishop B.M., van Hoek M.L. Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. Biochem. Biophys Res Commun 2010; 396 (2): 246-251. doi: 10.1016/j.bbrc.2010.04.073.

66. Aminov R.I. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 2010; 1 (134): 1/7. doi: 10.3389/fmicb.2010.00134.

67. Degiam Z.D., Abas A.T. Antimicrobial activity of some crude marine Mollusca extracts against some human pathogenic bacteria. Thi-Qar Medical J 2010; 4 (3): 142-147.

68. Girija S. A., Vijayshree P.J., Pandi S.K. et al. Antibacterial effect of squid ink on ESBL producing strains of Escherichia coli and Klebsiella pneumoniae. Indian J Geo-Marine Sci 2012: l: 41 (4): 338-343.

69. Park S.C., Nam J.P., Kim J.H., Kim Y.M., Nah J.W., Jang M.K. Antimicrobial action of water-soluble beta-chitosan against clinical multi-drug resistant bacteria. Int J Mol Sci 2015; 16: 7995-8007.

70. Livermore D.M. Future directions with daptomycin. J Antimicrob Chemother 2008: 62 (3); 41-49.

71. Kosciuczuk E.M., Lisowski P., Jarczak J., Strzalkowska N., Jόz’wik, A., Horban’czuk J., Krzyz’ewski, J., Zwierzchowski L., Bagnicka E., Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep 2012; 39 (12): 10957-10970.

72. Laverty G., Gorman S.P., Gilmore B.F. The potential of antimicrobial peptides as biocides. Int J Mol Sci 2011; 12 (10): 6566-6596.

73. Shanmugam A., Mahalakshmi T.S., Barwin V.A. Antimicrobial activity of polysaccharide isolated from the cuttlebone of Sepia aculeata (Orbingy, 1848) and Sepia brevimana (Steenstrup, 1875): an approach to selected antimicrobial activity for human pathogenic microorganisms. J Fish Aqua Sci 2008; 3(5): 268-274.

74. Aarestrup F.M. The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward. Philos Trans R Soc Lond B Biol Sci 2015; 370 (1670): 20140085. doi: 10.1098/rstb.2014.0085.

75. Balu S., Reljic R., Lewis M.J. et al. A novel human IgA monoclonal antibody protects against tuberculosis. J Immunol 2011; 186 (5): 3113- 3119. doi: 10.4049/jimmunol.1003189.

76. Bebbington C., Yarranton G. Antibodies for the treatment of bacterial infections: current experience and future prospects. Curr Opin Biotechnol 2008; 19 (6): 613-619. doi: 10.1016/j.copbio.2008.10.002

77. Berry J.D., Gaudet R.G. Antibodies in infectious diseases: polyclonals, mon-oclonals and niche biotechnology. N Biotechnol 2011; 28 (5): 489-501.

78. Ter Meulen J. Monoclonal antibodies in infectious diseases: clinical pipeline in 2011. Infect Dis Clin North Am 2011; 25(4): 789-802.

79. Tsang K.Y., Luk S., Lo J.Y. et al. Hong Kong experiences the «Ultimate superbug»: NDM-1 Enterobacteriaceae. Hong Kong Med J 2012; 18 (5): 439-441.

80. Xu T., Ying J., Yao X. et al. Identification and characterization of two novel bla (KLUC) resistance genes through large-scale resistance plasmids sequencing. PLoS One 2012; 7 (10): e47197.

81. Desbois A.P., Smith V.J. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. See comment in PubMed Commons belowAppl. Microbiol Biotechnol 2010: 85 (6): 1629-1642.

82. Jothi N., Kunthavai N. R. Isolation and identification of chitin and chi-tosan from cuttle bone of Sepia prashadi Winckworth. Int J Curr Sci 2014; 111: 18-25.

83. Schenkelberg T., Kieny M.P., Bianco A.E., Koff W.C. Building the Human Vaccines Project: strategic management recommendations and summary report of the 15-16 July 2014 business workshop. Expert Rev Vaccines 2015; 14(5): 629-636. doi: 10.1586/14760584.2015.1013466.

84. Seo M., Won H., Kim J. et al. Antimicrobial peptides for therapeutic applications: a review. Molecules 2012; 17 (10): 12276-12286.

85. Riosa A.C., Moutinhobоc C.G., Pintoc F.C. et al. Alternatives to over-coming bacterial resistances: State-of-the-art. Microbiological Research 2016; 191: 51-80. doi: org/10.1016/j.micres.2016.04.008

86. Marks L.R., Clementi E.A., Hakansson A.P. et al. The human milk protein-lipid complex HAMLET sensitizes bacterial pathogens to traditional antimicrobial agents. PLoS One 2012; 7(8): e43514.

87. Nichols D., Cahoon N., Trakhtenberg E.M., Pham L., Mehta A., Belanger A., Kanigan T., Lewis K., Epstein, S.S. Use of ichip for high-throughput in situ cultivation of «uncultivable» microbial species. Appl Environ Microbiol 2010; 76 (8): 2445-2450.

88. Ling L.L., Schneider T., Peoples A.J., Spoering A.L., Engels I., Conlon B.P., Mueller A., Schäberle T.F., Hughes D.E., Epstein S., Jones M., Lazarides L., Steadman V.A., Cohen D.R., Felix C.R., Ashley Fetterman K., Millett W.P., Nitti A.G., Zullo A.M., Chen C., Lewis K. 2015. A new antibiotic kills pathogen without detectable resistance. Nature 2015; 517 (7535): 455-459.

89. Беседнова H.H., Ковалев H.H., Запорожец Т.С. и др. Головоногие моллюски - источники новых антимикробных субстанций. Антибиотики и химиотер 2016; 61 (1-2): 32-42.

90. Беседнова H.H., Макаренкова И.Д., Звягинцева Т.Н. и др. Ингибирующее действие полисахаридов морских гидробионтов на формирование биопленок. Антибиотики и химиотер 2016; 61 (9-10): 64-73.

91. Girija S., Priyadharshini J.V., Suba P.K. et al. Isolation and characterization of LOLDUVIN-S: a novel antimicrobial protein from the ink of Indian squid Loligo duvauceli. Int J Curr Res 2012; (7): 4-14.

92. Monolisha S., Mani A.E., Patterson J., Patterson E. Molecular characterization and antimicrobial activity of Octopus aegina and Octopus dolfusi in gulf of mannar coasts. IJPSR 2013; 4 (9): 3582-3587.

93. Vasanthraja D., Ravitchandirane V., Anandan V. Anti-microbial activity and spectro-chemical investigation of ink extracts of Sepiella inermis (Van Hasselt 1835). Not Sci Biol 2014; 6 (3): 273-275. doi: 10.1038/nrd3591.

94. Ravichandiran M., Thiripurasalini S., Ravitchandirane V. et al. Chemical constituents and anti-tuberculosis activity of ink extracts of cuttlefish, Sepiella inermis. J Coast Life Med 2013; 1 (4): 253-257.

95. Derby C. Cephalopod ink: production, chemistry, functions and applications. Mar. Drugs. 2014; 12(5): 2700-2730.

96. Subhapradha N., Ramasamy P., Shanmugam V. et al. Physicochemical characterisation of ß-chitosan from Sepioteuthis lessoniana gladius. See comment in PubMed Commons belowFood Chem. 2013; 141 (2): 907-913


Для цитирования:


Андрюков Б.Г., Запорожец Т.С., Беседнова Н.Н. Перспективные стратегии поиска новых средств борьбы с инфекционными заболеваниями. Антибиотики и Химиотерапия. 2018;63(1-2):44-55.

For citation:


Andryukov B.G., Zaporozhets T.S., Besednova N.N. Perspective Strategies for Finding New Means of Fighting with Infectious Diseases. Antibiotics and Chemotherapy. 2018;63(1-2):44-55. (In Russ.)

Просмотров: 39


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)