Preview

Антибиотики и Химиотерапия

Расширенный поиск

Вторичные метаболиты морских микроорганизмов. II. Морские грибы и места их обитания

Полный текст:

Аннотация

Морские грибы представляют большой интерес, как новый многообещающий источник биологически активных веществ - противоопухолевых соединений, антибиотиков, ингибиторов биохимических процессов. Поскольку морские организмы обитают в биологически конкурентной среде с уникальными условиями, вторичные метаболиты морских грибов отличаются значительным многообразием. Последние исследования в области генома показали, что грибы могут быть носителями генных кластеров, кодирующих образование ранее неизвестных вторичных метаболитов. Активизация таких ослабленных или спящих генов может быть использована как для повышения активности известных соединений, так и для выделения новых веществ.

Об авторах

Т. И. Орлова
Московский государственный университет им. М. В. Ломоносова
Россия


В. Г. Булгакова
Московский государственный университет им. М. В. Ломоносова
Россия


А. Н. Полин
Московский государственный университет им. М. В. Ломоносова
Россия


Список литературы

1. Dyshlovoy S.A., Honecker F. Marine compounds and cancer: Where do we stand? Mar Drugs 2015; 13: 5657-5665.

2. Zheng L-N, Wang Y-J, Sheng J. et al. Antitumor peptides from marine organisms. Mar Drugs 2011; 9: 1840-1859.

3. Stonic V.A., Fedorow S. Marine low molecular weight natural products as potential cancer preventive compounds.Mar Drugs 2014; 12: 2: 636-671.

4. Fouilaud M., Venkatachlam M., Girand-Valenciennes E. et al. Antraquinone and derivatives from marine-derived fungi: structural diversity and selected biological activities. Mar Drugs 2016; 14: 4: pii E64

5. Blunt J.W., Copp B.R., Keyzers R.A. et al. Marine natural products. Nat Prod Rep 2016; 33: 3: 382-431.

6. Imhoff J. Natural products from marine fungi - still an underrepresented resourse. Mar Drugs 2016; 14: 1: 19.

7. Kjer J., Debbab A., Aly A.N., Proksch P. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 2010; 5: 3: 479-490.

8. Xiong Z-Q., Wang J-F., Hao Y-Y., Wang Y. Recent advances in the discovery and development of marine microbial products. Mar Drugs 2013; 11: 3: 700-717.

9. Reen F.J., Romano S., Dobson A.D., O'Gara. The sound of silence: activating silent biosynthetic gene clasters in marine microorganisms. Mar Drugs 2015; 13: 8: 4754-4783.

10. Xia M-W., Cui C-B., Li C-W., Wu C-J. Three new and eleven known unusual C25 steroids: activated production of silent metabolites in a marine-derived fungus by chemical mutagenesis strategy using diethyl sulphate. Mar Drugs 2014; 12: 3: 1545-1568.

11. Dong Y., Cui C-B, Li C-W et al. Activation of dormant secondary metabolite production by introducing neomycin resistance into the deep-sea fungus, Aspergillus versicolor ZBY-3. Mar Drugs 2014; 12: 8: 4326-4352.

12. Bean J., Mahid N., Burda W.N. et al. Epigenetic tailoring for the production of anti-infective cytosporones from the marine fungus Leucostoma persoonii. Mar Drugs 2012; 10: 4: 762-774.

13. Jiang W., Ye P., Chen C.T. et al. Two novel hepatocellular carcinoma cycle inhibitory cyclodepsipeptides from a hydrothermal vent crab-associated fungus Aspergillus clavatus C2WU. Mar Drugs 2013; 11: 12: 4761-4772.

14. Ye P., Shen L., Jiang W. et al. Zn-driven discovery of a hydrothermal vent fungal metabolite clavatustide C, and an experimental study of the anticancer mechanism of clavatustide B. Mar Drugs 2014; 12: 6: 3203-3217.

15. Wu B., Wu X., Sun M. et al. Two novel tyrosinase inhibitory sesquiterpenes induced by CuCl2 from a marine-derived fungus Pestalotiopsis sp.Z233. Mar Drugs 2013; 11: 8: 2713-2721.

16. Marmann A., Aly A.N., Lin W. et al. Co-cultivation - a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 2014; 12: 2: 1043-1065.

17. Ola A.R.B., Thomy D., Lai D. et al. Inducing secondary metabolite production by endophytic fungus Fusarium tricinctum coculture with Bacillus subtilis. J Nat Prod 2013; 76: 11: 2094-2099.

18. Oh D-C., Kaufman C.A., Jensen P.R., Fenical W. Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. In competing co-culture. J Nat Prod 2007; 70: 4: 515-520.

19. Wang W-J., Li D-Y., Li Y-C. et al. Caryophyllene sesquiterpenes from the marine-derived fungus Ascotricha sp. ZJ-M-5 by the one strain - many compounds strategy. J Nat Prod 2014; 77: 6: 1367-1371.

20. Liu Y., Li X-M., Meng L-H. et al. Bisthiodiketopiperazines and acorane sesquiterpenes produced by from the marine-derived fungus Penicillium adametzioides AS-53 on different culture media. J Nat Prod 2015; 78: 6: 1294-1299.

21. Liang W-L., Le X., Li H-J. et al. Exploring the chemodiversity and biological activities of secondary metabolites from the marine fungus Neosartorya pseudofischeri. Mar Drugs 2014; 12: 11: 5657-5676.

22. Wang Y-N., Shao C-L., Zheng C-J. et al. Diversity and antibacterial activities of fungi derived from the Gorgonian Echinogorgia rebekka from the South China Sea. Mar Drugs 2011; 9: 8: 1379-1390.

23. ao J., Sun U-L., Zhang X-Yet. al. Antifouling and antibacterial polyketides from marine gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023. J Antibiot 2013; 66: 4: 219-223.

24. Cao F., Yang Q., Shao C-L et al. Bioactive 7-oxabicyclic{6.3.0]lactam and 12-membered macrolides from a gorgonian-derived Cladosporium sp. fungus. Mar Drugs 2015; 13: 7: 4171-4178.

25. Zhao D-L., Shao C-L., Zhang Q. et al. Asaphilone and diphenyl ether derivatives from a gorgonian-derived strain of the fungus Penicillium pinophilum. J Nat Prod 2015; 78: 9: 2310-2314.

26. Chen M., Shao C-L., Meng H. et al. Anti-respiratory syncytial virus prenylated dihygroquinolone derivatives from the gorgonian-derived fungus Aspergillus sp. XS-20090B15. J Nat Prod 2014; 77: 12: 2720-2724.

27. Chen M., Wang K-L., Liu M. et al. Bioactive steroid derivatives and buty-rolactone derivatives from a gorgonian-derived Aspergillus sp. fungus. Chem Biodivers 2015; 12: 9: 1398-1406.

28. Nong X-H., Zheng Z-H., Zhang X-Y. et al. Polyketides from a marine-derived fungus Xylariaceaesp. Mar Drugs 2013; 11: 5: 1718-1727.

29. Chen M., Shao C-L., Fu X-M. et al. Lumazine peptides penilumamides BD and the cyclic pentapeptide asperpeptide A from a gorgonian-derived Aspergillus sp. fungus. J Nat Prod 2014; 77: 7: 1601-1606.

30. Li H-J., Xie Y-L., Xie Z-L. et al. Chondrosterins A-E, triquinane-type sesquiterpenoids from soft coral-associated fungus Chondrostereum sp. Mar Drugs 2012; 10: 3: 627-638.

31. Li H-J., Chen T., Xie Y-L. et al. Isolation and structural elucidation of chondrosterins F-H from the marine fungus Chondrostereum sp. Mar Drugs 2013; 11: 2: 551-558.

32. Zheng C-J., Shao C-L., Chen M. et al. Merosesquiterpenoids and tenmembered macrolides from a soft coral-derived Lophiostoma sp. fungus. Chem Biodivers 2015; 12: 9: 1407-1414.

33. Zhu M., Gao H., Wu C. et al. Lipid-lowering polyketides from a soft coral-derived fungus Cladosporium sp. TZP29. Bioorg Med Chem Lett 2015; 25: 17: 3606-3609.

34. Zheng C-J., Shao C-L., Guo Z-Y. et al. Bioactive hydroanthraquinones and anthraquinone dimers from a soft coral-derived Alternaria sp. fungus. J Nat Prod 2012; 75: 2: 189-197.

35. Liu J., Li F., Kim E.L. et al. Antibacterial polyketides from the jellyfish-derived fungus Paecilomyces variotii. J Nat Prod 2011; 74: 8: 1826-1829.

36. Wang H., Hong J., Yin J. et al. Dimeric octaketide spiroketals from the jellyfish-derived fungus Paecilomyces variotii J08NF-1. J Nat Prod 2015; 78: 11: 2832-2836.

37. Teske A., Reysenbach A-L. Editorial: Hydrothermal microbial ecosystems. Front Microbiol 2015; 6: 884.

38. Thornburg C.C., Zabriskie T.M., McPhail K.L. Deep-sea hydrothermal vents:potential hot spots for natural products discovery. J Nat Prod 2010; 73: 3: 489-499.

39. Chen X-W., Li C-W., Cui C-B. et al. Nine new and five known polyketides derived from a deep sea-sourced Aspergillus sp.16-02-1. Mar Drugs 2014; 12: 6: 3116-3137.

40. Liaw C-C., Yang Y-L., Lin C-K. et al. New meroterpenoids from Aspergillus terreus with inhibition of cyclooxygenase-2 expression. Org Lett 2015; 17: 10: 2330-2333.

41. Li Y., Ye D., Shao Z. et al. A sterol and spiroditerpenoids from a Penicillium sp. isolated from a deep sea sediment sample. Mar Drugs 2012; 10: 2: 497-506.

42. Wu B., Oesker V., Wiese J. et al. Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106. Mar Drugs 2014; 12: 3: 1208-1219.

43. Figueroa L., Jime 'nez C., Rodriques J. et al. 3-Nitroasterric acid derivatives from an antarctic sponge-derived Pseudogymnoascus sp. fungus. J Nat Prod 2015; 78: 4: 919-923.

44. Wu G., Lin A., Gu Q. et al. Four new chloro-eremophilane sesquiterpenes from an antarctic deep-sea derived fungus, Penicillium sp. PR19N-1. Mar Drugs 2013; 11: 4: 1399-1408.

45. Schulz D., Ohlendorf B., Zinecker H. et al. Eutypoids B-E produced by a Penicillium sp. strain from the North sea. J Nat Prod 2011; 74: 1: 99-101.

46. Wang J., Wei X., Qin X. et al. Antiviral merosesquiterpenoids produced by the antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702. J Nat Prod 2016; 79: 1: 59-65.

47. Lu X-L., Liu J-T., Liu X-Y. et al. Pimarane diterpenes from the arctic fungus Eutypella sp. D-1. J Antibiot 2014; 67: 2: 171-174.

48. Stierle D.B., Stierle A.A., Patacini B. The berkeleyacetals, three meroterpenes from a deep water acid mine waste Penicillium. J Nat Prod 2007; 70: 11: 1820-1823.

49. Stierle A.A., Stierle D.B., Patacini B. The berkeleyamides, amides from the acid lake fungus Penicillium rubrum. J Nat Prod 2008; 71: 5: 856-860.

50. Stierle D.B., Stierle A.A., Girtsman T. et al. Caspase-1 and -3 inhibiting drimane sesquiterpenoids from the extremophilic fungus Penicillium solitum. J Nat Prod 2012; 75: 2: 262-266.

51. Stierle D.B, Stierle A.A., Girtsman T. Caspase-1 inhibitors from an extremophilic fungus that target specific leukemia cell lines. J Nat Prod 2012; 75: 3: 344-350.

52. Stierle A.A., Stierle D.B., Girtsman T. et al. Azaphilones from an acid mine extremophile strain of a Pleurostomophora sp. J Nat Prod 2015; 78: 12: 2917-2923.

53. Tang Q., Guo K., Li X-Y et al. Three new asperentin derivatives from the algicolous fungus Aspergillus sp. F00785. Mar Drugs 2014; 12: 12: 5993-6002.

54. Wang W., Wang Y., Tao H. et al. Cerebrosides of the halotolerant fungus Alternaria raphani isolated from a sea salt field. J Nat Prod 2009; 72: 9: 1695-1698.

55. Wang W., Zhu T., Tao H. et al. Two new cytotoxic quinine type compounds from the halotolerant fungus Aspergillus variecolor. J Antibiot 2007; 60: 10: 603-607.

56. Xin Z-H., Wang W-L., Zhang Y-P. et al. Pennicitrinone D, a new citrinin dimmer from the halotolerant fungus Penicillium notatum B-52. J Antibiot 2009; 62: 4: 225-227.

57. Wang Y., Lu Z., Sun K., Zhu W. Effect of high salt stress on secondary metabolite production in the marine-derived fungus Spicaria elegans. Mar Drugs 2011; 9: 4: 535-542.

58. Li Y., Ye D., Chen X. et al. Breviane spiroditerpenoids from an extremetolerant Penicillium sp. isolated from a deep sea sediment sample. J Nat Prod 2009; 72: 5: 912-916.

59. Wang Y., Zheng J., Liu Pm et al. Three new compounds from Aspergillus terreus PT06-2 grown in a high salt medium. Mar Drugs 2011; 9: 8: 1368-1378.

60. Yamazaki H., Rotinsulu H., Narita R. et al. Induced production of halogenated epidithiodiketopiperazines by a marine-derived Trichoderma cf. brevicompactum with sodium halides. J Nat Prod 2015; 78: 10: 2319-2321.

61. Nenkep V., Yun K., Zhang D. et al. Induced production of bro-momethylchlamydosporols A and B from the marine-derived fungus Fusarium tricinctum. J Nat Prod 2010; 73: 12: 2061-2063.

62. Wagner C., El Omari M., König G.M. Biohalogenation: nature's way to synthesize halogenated metabolites. J Nat Prod 2009; 72: 3: 540-553.

63. Chen Z., Song Y., Chen Y. et al. Cyclic heptapeptides, cordyheptapeptides C-E, from the marine-derived fungus Acremonium persicinum SCSIO 115 and their cytotoxic activities. J Nat Prod 2012; 75: 6: 1215-1219.

64. Patnayake R., Fremlin L.J., Lacey E. et al. Acremolides A-D, lipodepsipeptides from an australian marine-derived fungus, Acremonium sp. J Nat Prod 2008; 71: 3: 403-408.

65. Julianti E., Oh H., Jang K.H. et al. Acremostrictin, a highly oxygenated metabolite from the marine fungus Acremonium strictum. J Nat Prod 2011; 74: 12: 2592-2594.

66. Kim H., Yang I., Ryu S.-Y. et al. Acredinones A and B, voltage-dependent potassium channel inhibitors from the sponge-derived fungus Acremonium sp. J Nat Prod 2015; 78: 3: 363-367.

67. Zhang P., Bao B., Dang H.T. et al. Anti-inflammatory sesquiterpenoids from a sponge-derived fungus Acremonium sp. J Nat Prod 2009; 72: 2: 270-275.

68. Trisuwan K., Khamthong N., Rukachaisirikul V. et al. Anthraquinone, cyclopentanone and naphthoquinone derivatives from the sea fan-derived fungi Fusarium spp. PSU-F14 and PSU-F135. J Nat Prod 2010; 73: 9: 1507-1511.

69. Wu G., Sun X., Yu G. et al. Cladosins A-E, hybrid polyketides from a deep-sea -derived fungus, Cladosporium sphaerospermum. J Nat Prod 2014; 77: 2: 270-275.

70. Fredimoses M., Zhou X., Lin X. et al. New prenylxanthones from the deep-sea derived fungus Emericella sp. SCSIO 05240. Mar Drugs 2014; 12: 6: 3190-3202.

71. Wu Q., Wu C., Long R. et al. Varioxiranols A-G and 19-O-methyl-22-methoxypre-shamixanthone, PKS and hybrid PKS-derived metabolites from a sponge-associated Emericella variecolor fungus. J Nat Prod 2015; 78: 10: 2461-2470.

72. Yamazaki H., Saito R., Takahashi O. et al. Trichoketides A and B, two new protein tyrosine phosphatase 1B inhibitors from the marine-derived fungus Trichoderma sp. J Antibiot 2015; 68: 10: 628-632.

73. Song F., Dai H., Tong Y. et al. Trichodermaketones A-D and 7-0-methylkoninginin D from the fungus Trichoderma koningii. J Nat Prod 2010; 73: 5: 806-810.

74. Yamazaki H., Rotinsulu H., Kaneko T. et al. A new dibenz[b,e]oxepine derivative, 1-hydroxy-10-methoxy- dibenz[b,e]oxepine-6,11-dione, from a marine-derived fungus Beauveria bassiana TPU942. Mar Drugs 2012; 10: 12: 2691-2697.

75. Du F-Y., Li X-M., Zhang P. et al. Cyclodepsipeptides and other O-containing heterocyclic metabolites from Beauveria felina EN-135, a marine-derived entomopathogenic fungus. Mar Drugs 2014; 12: 5: 2816-2826.

76. Oin C., Lin X., Lu X. et al. Sesquiterpenoids and xanthones derivatives produced by sponge-derived fungus Stachybotrys sp.HH1 ZSDS1F1-2. J Antibiot 2015; 68: 2: 121-125.

77. Wu B., Oesker V., Wiese J. Spirocyclic drimanes from the marine fungus Stachybotrys sp. strain MF347. Mar Drugs 2014; 12: 4: 1924-1938.

78. Mattern D.J., Valiante V., Unkles S.E., Brakhage A.A. Synthetic biology of fungal natural products. Front Microbiol 2015; 6: 775.


Для цитирования:


Орлова Т.И., Булгакова В.Г., Полин А.Н. Вторичные метаболиты морских микроорганизмов. II. Морские грибы и места их обитания. Антибиотики и Химиотерапия. 2016;61(9-10):52-63.

For citation:


Orlova T.I., Bulgakova V.G., Polin A.N. Secondary Metabolites from Marine Microorganisms. II. Marine Fungi and Their Habitats. Antibiotics and Chemotherapy. 2016;61(9-10):52-63. (In Russ.)

Просмотров: 10


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)