Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

The Combined Effect of Bacteriophages and Antibiotics on Pseudomonas aeruginosa Biofilm

https://doi.org/10.37489/0235-2990-2020-65-3-4-7-11

Abstract

Currently, the problem of nosocomial infections is of urgent concern. Pseudomonas aeruginosa is one of the key causative agents of this type of disease. The prospect of using bacteriophages in the prevention and control of infectious diseases is now being actively studied. The aim of the work is to study the effect of new bacteriophages on P.aeruginosa biofilm when used together with the antibiotic gentamicin. Cells of the laboratory reference strain P.aeruginosa PAO1 were grown in 96-well plates for a day, the resulting biofilms were treated with gentamicin in various concentrations, as well as bacteriophages AN14 and AN1. The degree of biofilm degradation was evaluated by staining the cells with crystal violet dye. The new lytic bacterio­phages AN14 (Siphoviridae family), AN1 (Myoviridae family) used in the study, showed pronounced antibiofilm activity on the first day of exposure to P.aeruginosa biofilm (p<0.001). The destructive effect of gentamicin on biofilms increased when the concentration of the antibiotic was increased in the range of 2—16 mg/ml. Addition of lytic bacteriophages AN14 and AN1 enhanced the effect of the antibiotic (p=0.05). Thus, the combined use of lytic bacteriophages and antibiotics led to a more effective eradication of biofilms than when used separately.

About the Authors

A. S. Gorshkova
Limnological Institute, Siberian Branch of the Russian Academy of Sciences
Russian Federation
Irkutsk


V. V. Drwker
Limnological Institute, Siberian Branch of the Russian Academy of Sciences
Russian Federation
Irkutsk


N. N. Sykilinda
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
Russian Federation
Moscow


References

1. Lazareva A.V., Chebotar' I.V, Kryzhanovskaya O.A., Chebotar' V.I., Mayanskij N.A. Pseudomonas aeruginosa: patogennost', patogenez i patologiya. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya 2015; 17 (3): 170-186. [in Russian]

2. Waters E.M., Neill D.R., Kaman B., Sahota J.S., Clokie M.R.J., Winstanley C. et. al. Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax 2017; 72 (7): 666-667.

3. Danis-Wlodarczyk K., Vandenheuvel D., Jang H. B., Briers Y., Olszak T., Arabski M. et al. A proposed integrated approach for the preclinical evaluation of phage therapy in Pseudomonas infections. Scientific reports 2016; 28115 (6). doi.org/10.1038/srep28115

4. Alves D.R, Perez-Esteban P., Kot W., Bean J. E., Arnot T., Hansen L. H. et al. A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. Microb Biotechnol 2015; 9 (1): 61-74.

5. Dedrick R. M., Guerrero-Bustamante C.A., Garlena R.A., Russell D.A., Ford K., Harris K., Gilmour K.C., Soothill J., Jacobs-Sera D., Schooley R.T., Hatfull G.F., Spencer H. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nature Medicine 2019; 25: 730-733.

6. Gorshkova A.S., Sykilinda N.N., Drjyukker V.V. Effekt bakteriofagov na povyshenie chuvstvitel'nosti kletok Pseudomonas aeruginosa k antibiotikam. Sbornik tezisov VI Vserossijskogo s mezhdunarodnym uchastiem Kongressa molodykh uchenykh-biologov 'Simbioz-Rossiya 2013', Irkutsk. Izdatel'stvo 'Asprint', 2013; 68—69.

7. Knezevic P, Petrovic O. A colorimetric microtiter plate method for assessment of phage effect on Pseudomonas aeruginosa biofilm. J Microbiol Methods 2008; 74 (2-3), 114-118.

8. Ceyssens P.J., Mesyanzhinov V., Sykilinda N., Briers Y., Roucourt B., Lavigne R, Robben J., Domashin A., Miroshnikov K., Volckaert G., Hertveldt K. The genome and structural proteome of YuA, a new Pseudomonas aeruginosa phage resembling M6. J Bacteriol 2008; 190 (4): 1429-1435.

9. Fong S.A., Drilling A., Morales S., Cornet M.E., Woodworth B. A., Fokkens W. J. Activity of bacteriophages in removing biofilms of Pseudomonas aeruginosa isolates from chronic rhinosinusitis patients. Front Cell Infect Microbiol 2017; 7 (418). doi:10.3389/fcimb.2017.00418

10. Chaudhry W.N., Concepcio'n-Acevedo J., Park T., Andleeb S., Bull J.J., Levin B.R. Synergy and Order Effects of Antibiotics and Phages in Killing Pseudomonas aeruginosa Biofilms. PLoS ONE 2017; 12 (1): e0168615. doi:10.1371/journal.pone.0168615

11. Latz S., Kruttgen A., Hafner H., Buhl E. M., Ritter K., Horz H.P. Differential Effect of Newly Isolated Phages Belonging to PB1-Like, phiKZ-Like and LUZ24-Like Viruses against Multi-Drug Resistant Pseudomonas aeruginosa under Varying Growth Conditions Viruses 2017; 9 (315). doi:10.3390/v9110315

12. Chan B. K., Turner P. E., Kim S., Mojibian H. R., Elefteriades J. A, Narayan D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evolution, Medicine, and Public Health 2018; 1 (2018): 60-66. doi:10.1039/emph/eoy005

13. Schmidt C. Phage therapy's latest makeover. Nature Biotechnology 2019; https://doi.org/10.1038/s41587-019-0133-z


Review

For citations:


Gorshkova A.S., Drwker V.V., Sykilinda N.N. The Combined Effect of Bacteriophages and Antibiotics on Pseudomonas aeruginosa Biofilm. Antibiot Khimioter = Antibiotics and Chemotherapy. 2020;65(3-4):7-11. (In Russ.) https://doi.org/10.37489/0235-2990-2020-65-3-4-7-11

Views: 961


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)