Preview

Антибиотики и Химиотерапия

Расширенный поиск

Современные представления о механизмах резистентности к антимикробным препаратам Enterococcus Faecalis и E. Faecium (обзор литературы)

Аннотация

В настоящее время энтерококки все чаще становятся этиологическими агентами разнообразных инфекционных патологий. Наиболее распространенными видами, вызывающими большинство энтерококковых инфекций являются Enterococcus faecalis и E. faecium. Оба вида демонстрируют природную низкоуровневую устойчивость к аминогликозидам, цефалоспоринам, хинолонам, клиндамицину и ко-тримоксазолу. Кроме того, особенности их генома позволяют легко приобретать резистентность к другим, широко используемым в клинической практике антибактериальным препаратам, посредством мутаций или путем горизонтального переноса генетических детерминант устойчивости. В обзоре изложены современные знания о механизмах резистентности энтерококков к наиболее часто используемым антибактериальным препаратам.

Об авторах

Татьяна Сергеевна Коменкова
ФГБОУ ВО ТГМУ Минздрава России
Россия
аспирант Центральной научно-исследовательской лаборатории ФГБОУ ВО «Тихоокеанский государственный медицинский университет» Минздрава России (г. Владивосток, Россия)


Елена Александровна Зайцева
ФГБОУ ВО ТГМУ Минздрава России
Россия
д.м.н., доцент, ведущий научный сотрудник Центральной научно-исследовательской лаборатории ФГБОУ ВО «Тихоокеанский государственный медицинский университет» Минздрава России (г. Владивосток, Россия)


Елена Александровна Зайцева
ФГБОУ ВО ТГМУ Минздрава России
Россия
д.м.н., доцент, ведущий научный сотрудник Центральной научно-исследовательской лаборатории ФГБОУ ВО «Тихоокеанский государственный медицинский университет» Минздрава России (г. Владивосток, Россия)


Список литературы

1. Мельникова Е.А., Зайцева Е.А., Лучанинова В.Н., Крукович Е.В., Коменкова Т.С., Феоктистова Ю.В. Дифференцированные подходы к лечению инфекции мочевой системы у детей с учетом этиологического фактора Enterococcus faecalis // Тихоокеанский медицинский журнал. – 2019. - №4(78) – С. 60-65 [Melnikova EA., Zaitseva EA., Luchaninova VN., Krukovich EV., Komenkova TS., Feoktistova YuV. Differentiated approaches to the treatment of urinary tract infection in children taking into account the etiological factor Enterococcus faecalis. Tikhookeanskii meditsinskii zhurnal 2019; 4(78): 60-65 (In Russ).] doi: 10.34215/1609-1175-2019-4-60-65 URL https://elibrary.ru/item.asp?id=41394932

2. Shrestha LB, Baral R, Poudel P, Khanal B. Clinical, etiological and antimicrobial susceptibility profile of pediatric urinary tract infections in a tertiary care hospital of Nepal. BMC Pediatr. 2019; 19(1):36. doi:10.1186/s12887-019-1410-1 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6350346/

3. Weber S, Hogardt M, Reinheimer C, Wichelhaus TA, Kempf VAJ, Kessel J, et al. Bloodstream infections with vancomycin-resistant enterococci are associated with a decreased survival in patients with hematological diseases. Ann Hematol. 2019; 98(3): 763-773. doi:10.1007/s00277-019-03607-z URL https://pubmed.ncbi.nlm.nih.gov/30666433/

4. Zhao-Fleming HH, Wilkinson JE, Larumbe E, Dissanaike S, Rumbaugh K. Obligate anaerobes are abundant in human necrotizing soft tissue infection samples - a metagenomics analysis. APMIS. 2019; 127(8): 577-587. doi:10.1111/apm.12969 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852132/

5. Libertucci J, Bassis CM, Cassone M, Gibson K, Lansing B, Mody L ,et al. Bacteria Detected in both Urine and Open Wounds in Nursing Home Residents: a Pilot Study. mSphere. 2019; 4(4):e00463-19. doi:10.1128/mSphere.00463-19 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6714893/

6. Bi R, Qin T, Fan W, Ma P, Gu B. The emerging problem of linezolid-resistant enterococci. J Glob Antimicrob Resist. 2018; 13:11-19. doi: 10.1016/j.jgar.2017.10.018.

7. Mete E, Kaleli İ, Cevahir N, Demir M, Akkaya Y, Kiriş Satılmış Ö. Evaluation of virulence factors in enterococcus species. Mikrobiyol Bul. 2017; 51(2):101-114. doi:10.5578/mb.53992 URL https://pubmed.ncbi.nlm.nih.gov/29101082/

8. Matlou DP, Bissong MEA, Tchatchouang CK, Adem MR, Foka FET, Kumar A, et al. Virulence profiles of vancomycin-resistant enterococci isolated from surface and ground water utilized by humans in the North West Province, South Africa: a public health perspective. Environ Sci Pollut Res Int. 2019; 26(15): 15105-15114. doi:10.1007/s11356-019-04836-5 URL https://pubmed.ncbi.nlm.nih.gov/30924038/

9. Гненная Н.В., Сазыкин И.С., Сазыкина М.А. Механизмы приобретения микроорганизмами резистентности к антибиотикам // Вестник биотехнологии и физико-химической биологии имени Ю.А. Овчинникова. – 2018. – Т.14. – №1 – С. 77-85. [Gnennaya NV, Sazykin IS, Sazykina MA. Mekhanizmy priobreteniya mikroorganizmami rezistentnosti k antibiotikam. Vestnik biotekhnologii i fiziko-khimicheskoi biologii imeni Yu.A. Ovchinnikova 2018; 14(1): 77-85 (In Russ).] URL https://elibrary.ru/item.asp?id=36309678

10. Сидоренко С.В., Тишков В.И. Молекулярные основы резистентности к антибиотикам // Успехи биологической химии. – 2004. – Т.44 – №2 – С. 263-306. [Sidorenko SV, Tishkov VI. Molekulyarnye osnovy rezistentnosti k antibiotikam. Uspekhi biologicheskoi khimii 2004; 44(2): 263-306 (In Russ).] URL https://www.fbras.ru/wp-content/uploads/2017/10/sidorenko.pdf

11. Супотницкий М.В. Механизмы развития резистентности к антибиотикам у бактерий // Биопрепараты. – 2011. – №2 – С. 4-11 [Supotnitskii MV. Mechanisms of antibiotic resistance in bacteria. Biopreparaty 2011; 2: 4-11 (In Russ).] URL https://elibrary.ru/item.asp?id=20370194

12. Holmes AH, Moore LS, Sundsfjord A, Steinbakk M., Regmi S., Karkey A., et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016; 387(10014):176-187. doi:10.1016/S0140-6736(15)00473-0 URL https://pubmed.ncbi.nlm.nih.gov/26603922/

13. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus. 2017; 9(6):e1403. doi:10.7759/cureus.1403 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5573035/

14. Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr. 2016; 4(2):10.1128/microbiolspec.VMBF-0016-2015. doi:10.1128/microbiolspec.VMBF-0016-2015 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888801/

15. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018; 31(4):e00088-17. doi:10.1128/CMR.00088-17 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6148190/

16. Gilmore MS, Clewell DB, Ike Y, Shankar N, eds. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Boston: Massachusetts Eye and Ear Infirmary; 2014. URL https://www.ncbi.nlm.nih.gov/books/NBK190424/

17. García-Solache M, Rice LB. The Enterococcus: a Model of Adaptability to Its Environment. Clin Microbiol Rev. 2019;32(2):e00058-18. doi:10.1128/CMR.00058-18 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431128/

18. Triboulet S, Bougault CM, Laguri C, Hugonnet JE, Arthur M, Simorre JP. Acyl acceptor recognition by Enterococcus faecium L,D-transpeptidase Ldtfm. Mol Microbiol. 2015;98(1):90-100. doi:10.1111/mmi.13104 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691707/

19. Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther. 2014; 12(10):1221-1236. doi:10.1586/14787210.2014.956092 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433168/

20. O'Driscoll T, Crank CW. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist. 2015; 8:217-230. doi:10.2147/IDR.S54125 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521680/

21. Murray BE. Beta-lactamase-producing enterococci. Antimicrob Agents Chemother. 1992; 36(11):2355-2359. doi:10.1128/aac.36.11.2355 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC284334/pdf/aac00375-0029.pdf

22. Sarti M, Campanile F, Sabia C, Santagati M, Gargiulo R, Stefani S. Polyclonal diffusion of beta-lactamase-producing Enterococcus faecium. J Clin Microbiol. 2012; 50(1):169-172. doi:10.1128/JCM.05640-11 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256721/

23. Agarwal J, Kalyan R, Singh M. High-level aminoglycoside resistance and beta-lactamase production in enterococci at a tertiary care hospital in India. Jpn J Infect Dis. 2009; 62(2):158-159. URL https://pubmed.ncbi.nlm.nih.gov/19305061/

24. Hollenbeck BL, Rice LB. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 2012; 3(5):421-433. doi:10.4161/viru.21282 URL https://pubmed.ncbi.nlm.nih.gov/23076243/

25. Arias CA, Singh KV, Panesso D, Murray BE. Time-kill and synergism studies of ceftobiprole against Enterococcus faecalis, including beta-lactamase-producing and vancomycin-resistant isolates. Antimicrob Agents Chemother. 2007; 51(6):2043-2047. doi:10.1128/AAC.00131-07 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1891360/

26. Munita JM, Bayer AS, Arias CA. Evolving resistance among Gram-positive pathogens. Clin Infect Dis. 2015; 61 Suppl 2(Suppl 2):S48-S57. doi:10.1093/cid/civ523 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551095/

27. Infante VH, Conceição N, de Oliveira AG, Darini AL. Evaluation of polymorphisms in pbp4 gene and genetic diversity in penicillin-resistant, ampicillin-susceptible Enterococcus faecalis from hospitals in different states in Brazil. FEMS Microbiol Lett. 2016; 363(7):fnw044. doi:10.1093/femsle/fnw044 URL https://academic.oup.com/femsle/article/363/7/fnw044/2197769

28. Rice LB, Carias LL, Hutton-Thomas R, Sifaoui F, Gutmann L, Rudin SD. Penicillin-binding protein 5 and expression of ampicillin resistance in Enterococcus faecium. Antimicrob Agents Chemother. 2001; 45(5): 1480-1486. doi:10.1128/AAC.45.5.1480-1486.2001 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC90492/

29. Arias CA, Contreras GA, Murray BE. Management of multidrug-resistant enterococcal infections. Clin Microbiol Infect. 2010;16(6):555-562. doi:10.1111/j.1469-0691.2010.03214.x URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686902/

30. Niu H, Yu H, Hu T, Tian G., Zhang L., Guo X., et al. The prevalence of aminoglycoside-modifying enzyme and virulence genes among enterococci with high-level aminoglycoside resistance in Inner Mongolia, China. Braz J Microbiol. 2016; 47(3): 691-696. doi:10.1016/j.bjm.2016.04.003 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927675/

31. Chow JW. Aminoglycoside resistance in enterococci. Clin Infect Dis. 2000; 31(2):586-589. doi:10.1086/313949 URL https://academic.oup.com/cid/article/31/2/586/299455

32. Shete V, Grover N, Kumar M. Analysis of Aminoglycoside Modifying Enzyme Genes Responsible for High-Level Aminoglycoside Resistance among Enterococcal Isolates. J Pathog. 2017;2017:3256952. doi:10.1155/2017/3256952 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757141/

33. Решедько Г.К. Значение ферментативной модификации аминогликозидов в развитии резистентности у бактерий // Клиническая микробиология и антимикробная химиотерапия. – 1999. - Т.1 - №1 С.40-50. [Reshed'ko GK. Znachenie fermentativnoi modifikatsii aminoglikozidov v razvitii rezistentnosti u bakterii. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya. 1999; 1(1): 40-50 (In Russ).] URL https://cmac-journal.ru/publication/1999/1/cmac-1999-t01-n1-p040/cmac-1999-t01-n1-p040.pdf

34. Kobayashi N, Alam M, Nishimoto Y, Urasawa S, Uehara N, Watanabe N. Distribution of aminoglycoside resistance genes in recent clinical isolates of Enterococcus faecalis, Enterococcus faecium and Enterococcus avium. Epidemiol Infect. 2001; 126(2): 197-204. doi:10.1017/s0950268801005271 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869683/

35. Watanabe S, Kobayashi N, Quiñones D, Nagashima S, Uehara N, Watanabe N. Genetic diversity of enterococci harboring the high-level gentamicin resistance gene aac(6')-Ie-aph(2'')-Ia or aph(2'')-Ie in a Japanese hospital. Microb Drug Resist. 2009;15(3):185-194. doi:10.1089/mdr.2009.0917 URL https://pubmed.ncbi.nlm.nih.gov/19728776/

36. El-Mahdy R, Mostafa A, El-Kannishy G. High level aminoglycoside resistant enterococci in hospital-acquired urinary tract infections in Mansoura, Egypt. Germs. 2018; 8(4): 186-190. doi:10.18683/germs.2018.1145 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363399/

37. Padmasini E, Padmaraj R, Ramesh SS. High level aminoglycoside resistance and distribution of aminoglycoside resistant genes among clinical isolates of Enterococcus species in Chennai, India. ScientificWorldJournal. 2014;2014:329157. doi:10.1155/2014/329157 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932257/

38. Wright GD, Thompson PR. Aminoglycoside phosphotransferases: proteins, structure, and mechanism. Front Biosci. 1999; 4:D9-D21. doi:10.2741/wright URL https://pubmed.ncbi.nlm.nih.gov/9872733/

39. Amini F, Krimpour HA, Ghaderi M, Vaziri S, Ferdowsi S, Azizi M, et al. Prevalence of Aminoglycoside Resistance Genes in Enterococcus Strains in Kermanshah, Iran. Iran J Med Sci. 2018;43(5):487-493. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123559/

40. Economou V., Sakkas H., Delis G., Gousia P. Antibiotic resistance in enterococcus spp. friend or foe? Foodborne Pathogens and Antibiotic Resistance. John Wiley & Sons, Inc.; 2017. pp. 365–395. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119139188.ch16

41. Alcock et al. 2020. CARD 2020: antibiotic resistome surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 48, D517-D525. [updated 2020 July 5]. Available from: https://card.mcmaster.ca/home

42. Abdelkareem MZ, Sayed M, Hassuna NA, Mahmoud MS, Abdelwahab SF. Multi-drug-resistant Enterococcus faecalis among Egyptian patients with urinary tract infection. J Chemother. 2017;29(2):74-82. doi:10.1080/1120009X.2016.1182358 URL https://pubmed.ncbi.nlm.nih.gov/27351108/

43. Donabedian SM, Thal LA, Hershberger E, et al. Molecular characterization of gentamicin-resistant Enterococci in the United States: evidence of spread from animals to humans through food. J Clin Microbiol. 2003;41(3):1109-1113. doi:10.1128/jcm.41.3.1109-1113.2003 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150269/

44. Светоч Э.А., Теймуразов М.Г., Тазина О.И., Абаимова А.А., Лев А.И., Асташкин Е.И., и др. Антибиотикорезистентность культур Enterococcus spp., выделенных от промышленной птицы в 2013–2016 гг. в хозяйствах Российской Федерации, и детекция у них генов резистентности к ванкомицину // Альманах клинической медицины. – 2017. - №45(2) - С. 138-146. [Svetoch E.A., Teymurazov M.G., Tazina O.I., Abaimova A.A., Lev A.I., Astashkin E.I., et al. Antibacterial resistance of Enterococcus spp. isolated from commercial poultry of the Russian Federation farms in 2013–2016, and identification of vancomycin resistance genes. Almanac of Clinical Medicine. 2017;45(2):138-146. (In Russ.)] doi.org/10.18786/2072-0505-2017-45-2-138-146 URL https://www.almclinmed.ru/jour/article/view/526/523

45. Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis. 2006;42 Suppl 1:S25-S34. doi:10.1086/491711 URL https://academic.oup.com/cid/article/42/Supplement_1/S25/275393

46. Evers S, Quintiliani R Jr, Courvalin P. Genetics of glycopeptide resistance in enterococci. Microb Drug Resist. 1996;2(2):219-223. doi:10.1089/mdr.1996.2.219 IRL https://pubmed.ncbi.nlm.nih.gov/9158763/

47. Sun M, Wang Y, Chen Z, Zhu X, Tian L, Sun Z. The first report of the vanC1 gene in Enterococcus faecium isolated from a human clinical specimen. Mem Inst Oswaldo Cruz. 2014;109(6):712-715. doi:10.1590/0074-0276140019 URL https://pubmed.ncbi.nlm.nih.gov/25119395/

48. Nishiyama M, Iguchi A, Suzuki Y. Identification of Enterococcus faecium and Enterococcus faecalis as vanC-type Vancomycin-Resistant Enterococci (VRE) from sewage and river water in the provincial city of Miyazaki, Japan. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50(1):16-25. doi:10.1080/10934529.2015.964599 URL https://pubmed.ncbi.nlm.nih.gov/25438128/

49. Bert F, Leflon-Guibout V, Le Grand J, Bourdon N, Nicolas-Chanoine MH. Emergence d'entérocoque dépendant de la vancomycine à la suite d'un traitement par glycopeptide: cas clinique et revue. Pathol Biol (Paris). 2009;57(1):56-60. (in French) doi:10.1016/j.patbio.2008.07.017 URL https://pubmed.ncbi.nlm.nih.gov/18845404/

50. Prévost M, Van Belle D, Tulkens PM, Courvalin P, Van Bambeke F. Modeling of Enterococcus faecalis D-alanine:D-alanine ligase: structure-based study of the active site in the wild-type enzyme and in glycopeptide-dependent mutants. J Mol Microbiol Biotechnol. 2000;2(3):321-330. URL https://pubmed.ncbi.nlm.nih.gov/10937441/

51. Silverman JA, Perlmutter NG, Shapiro HM. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother. 2003;47(8):2538-2544. doi:10.1128/aac.47.8.2538-2544.2003 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC166110/

52. Mishra NN, Bayer AS, Tran TT, Shamoo Y, Mileykovskaya E, Dowhan W, et al. Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid content. PLoS One. 2012;7(8):e43958. doi:10.1371/journal.pone.0043958 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428275/

53. Arias CA, Panesso D, McGrath DM, et al. Genetic basis for in vivo daptomycin resistance in enterococci. N Engl J Med. 2011;365(10):892-900. doi:10.1056/NEJMoa1011138 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3205971/

54. Khan A, Davlieva M, Panesso D, Rincon S, Miller WR, Diaz L, et al. Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in Enterococcus faecalis [published online ahead of print, 2019 Dec 9]. Proc Natl Acad Sci U S A. 2019;116(52):26925-26932. doi:10.1073/pnas.1916037116 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936494/

55. Munita JM, Tran TT, Diaz L, et al. A liaF codon deletion abolishes daptomycin bactericidal activity against vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother. 2013;57(6):2831-2833. doi:10.1128/AAC.00021-13 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3716119/

56. Bender JK, Cattoir V, Hegstad K, Sadowy E, Coque TM, Westh H, et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist Updat. 2018;40:25-39. doi:10.1016/j.drup.2018.10.002 URL https://www.sciencedirect.com/science/article/pii/S1368764618300487?via%3Dihub

57. Beganovic M, Luther MK, Rice LB, Arias CA, Rybak MJ, LaPlante KL. A Review of Combination Antimicrobial Therapy for Enterococcus faecalis Bloodstream Infections and Infective Endocarditis. Clin Infect Dis. 2018;67(2):303-309. doi:10.1093/cid/ciy064 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6248357/

58. Cavaco LM, Bernal JF, Zankari E, Leon M., Hendriksen R.S., Perez-Gutierrez E., et al. Detection of linezolid resistance due to the optrA gene in Enterococcus faecalis from poultry meat from the American continent (Colombia). J Antimicrob Chemother. 2017;72(3):678-683. doi:10.1093/jac/dkw490 URL https://academic.oup.com/jac/article/72/3/678/2691392

59. Diaz L, Kiratisin P, Mendes RE, Panesso D, Singh KV, Arias CA. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrob Agents Chemother. 2012;56(7):3917-3922. doi:10.1128/AAC.00419-12 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393385/

60. Klupp EM, Both A, Belmar Campos C, et al. Tedizolid susceptibility in linezolid- and vancomycin-resistant Enterococcus faecium isolates. Eur J Clin Microbiol Infect Dis. 2016;35(12):1957-1961. doi:10.1007/s10096-016-2747-0 URL https://pubmed.ncbi.nlm.nih.gov/27525679/

61. Chen H, Wu W, Ni M, Liu Y, Zhang J, Xia F, et al. Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms. Int J Antimicrob Agents. 2013;42(4):317-321. doi:10.1016/j.ijantimicag.2013.06.008 URL https://pubmed.ncbi.nlm.nih.gov/23880167/

62. Schwarz S, Werckenthin C, Kehrenberg C. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri. Antimicrob Agents Chemother. 2000;44(9):2530-2533. doi:10.1128/aac.44.9.2530-2533.2000 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC90098/

63. Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Antimicrob Agents Chemother. 2006;50(7):2500-2505. doi:10.1128/AAC.00131-06 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1489768/

64. Lazaris A, Coleman DC, Kearns AM, Pichon B, Kinnevey PM, Earls MR, et al. Novel multiresistance cfr plasmids in linezolid-resistant methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (VRE) from a hospital outbreak: co-location of cfr and optrA in VRE. J Antimicrob Chemother. 2017;72(12):3252-3257. doi:10.1093/jac/dkx292 URL https://academic.oup.com/jac/article/72/12/3252/4096430

65. Cercenado E. Enterococcus: resistencias fenotípicas y genotípicas y epidemiología en España. Enferm Infecc Microbiol Clin. 2011;29 Suppl 5:59-65. (in Spanish) doi:10.1016/S0213-005X(11)70045-3 URL https://pubmed.ncbi.nlm.nih.gov/22305671/

66. Zhang Y, Dong G, Li J, Chen L, Liu H, Bi W, et al. A high incidence and coexistence of multiresistance genes cfr and optrA among linezolid-resistant enterococci isolated from a teaching hospital in Wenzhou, China. Eur J Clin Microbiol Infect Dis. 2018;37(8):1441-1448. doi:10.1007/s10096-018-3269-8 URL https://pubmed.ncbi.nlm.nih.gov/29909468/

67. Deshpande LM, Ashcraft DS, Kahn HP, Pankey G, Jones RN, Farrell DJ, et al. Detection of a New cfr-Like Gene, cfr(B), in Enterococcus faecium Isolates Recovered from Human Specimens in the United States as Part of the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother. 2015;59(10):6256-6261. doi:10.1128/AAC.01473-15 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4576063/

68. Bender JK, Fleige C, Klare I, Fiedler S, Mischnik A, Mutters NT, et al. Detection of a cfr(B) Variant in German Enterococcus faecium Clinical Isolates and the Impact on Linezolid Resistance in Enterococcus spp. PLoS One. 2016;11(11):e0167042. doi:10.1371/journal.pone.0167042 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125667/

69. Inkster T, Coia J, Meunier D, Doumith M, Martin K, Pike R, et al. First outbreak of colonization by linezolid- and glycopeptide-resistant Enterococcus faecium harbouring the cfr gene in a UK nephrology unit. J Hosp Infect. 2017;97(4):397-402. doi:10.1016/j.jhin.2017.07.003 URL https://pubmed.ncbi.nlm.nih.gov/28698020/

70. Morroni G, Brenciani A, Antonelli A, D’Andrea MM, Pilato VDi, Fioriti S, et al. Characterization of a Multiresistance Plasmid Carrying the optrA and cfr Resistance Genes From an Enterococcus faecium Clinical Isolate. Front Microbiol. 2018;9:2189. doi:10.3389/fmicb.2018.02189 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6142821/

71. Bonilla H, Huband MD, Seidel J, Schmidt H, Lescoe M, McCurdy SP, et al. Multicity outbreak of linezolid-resistant Staphylococcus epidermidis associated with clonal spread of a cfr-containing strain. Clin Infect Dis. 2010;51(7):796-800. doi:10.1086/656281 URL https://academic.oup.com/cid/article/51/7/796/354308

72. Argudín MA, Youzaga S, Dodémont M, Heinrichs A., Roisin S., Deplano A., et al. Detection of optrA-positive enterococci clinical isolates in Belgium. Eur J Clin Microbiol Infect Dis. 2019;38(5):985-987. doi:10.1007/s10096-019-03504-3 URL https://pubmed.ncbi.nlm.nih.gov/30771123/

73. Brenciani A, Fioriti S, Morroni G, Cucco L, Morelli A, Pezzotti G, et al. Detection in Italy of a porcine Enterococcus faecium isolate carrying the novel phenicol-oxazolidinone-tetracycline resistance gene poxtA. J Antimicrob Chemother. 2019;74(3):817-818. doi:10.1093/jac/dky505 URL https://academic.oup.com/jac/article-abstract/74/3/817/5230877?redirectedFrom=fulltext

74. Marco F, Dowzicky MJ. Antimicrobial susceptibility among important pathogens collected as part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) in Spain, 2004-2014. J Glob Antimicrob Resist. 2016;6:50-56. doi:10.1016/j.jgar.2016.02.005 URL https://pubmed.ncbi.nlm.nih.gov/27530839/

75. Werner G, Gfrörer S, Fleige C, Witte W, Klare I. Tigecycline-resistant Enterococcus faecalis strain isolated from a German intensive care unit patient. J Antimicrob Chemother. 2008;61(5):1182-1183. doi:10.1093/jac/dkn065 URL https://academic.oup.com/jac/article/61/5/1182/847637

76. Cordina C, Hill R, Deshpande A, Hood J, Inkster T. Tigecycline-resistant Enterococcus faecalis associated with omeprazole use in a surgical patient. J Antimicrob Chemother. 2012;67(7):1806-1807. doi:10.1093/jac/dks122 URL https://academic.oup.com/jac/article/67/7/1806/733090

77. Freitas AR, Novais C, Correia R, Monteiro M, Coque TM, Peixe L. Non-susceptibility to tigecycline in enterococci from hospitalised patients, food products and community sources. Int J Antimicrob Agents. 2011;38(2):174-176. doi:10.1016/j.ijantimicag.2011.04.014 URL https://pubmed.ncbi.nlm.nih.gov/21664110/

78. Dabul ANG, Avaca-Crusca JS, Navais RB, Merlo TP, Van Tyne D, Gilmore MS et al. Molecular basis for the emergence of a new hospital endemic tigecycline-resistant Enterococcus faecalis ST103 lineage. Infect Genet Evol. 2019;67:23-32. doi:10.1016/j.meegid.2018.10.018 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599719/

79. Woźniak-Biel A, Bugla-Płoskońska G, Burdzy J, Korzekwa K, Ploch S, Wieliczko A. Antimicrobial Resistance and Biofilm Formation in Enterococcus spp. Isolated from Humans and Turkeys in Poland. Microb Drug Resist. 2019;25(2):277-286. doi:10.1089/mdr.2018.0221 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441282/

80. Demirgül F, Tuncer Y. Detection of Antibiotic Resistance and Resistance Genes in Enterococci Isolated from Sucuk, a Traditional Turkish Dry-Fermented Sausage [published correction appears in Korean J Food Sci Anim Resour. 2017;37(6):963]. Korean J Food Sci Anim Resour. 2017;37(5):670-681. doi:10.5851/kosfa.2017.37.5.670 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686325/

81. Agersø Y, Pedersen AG, Aarestrup FM. Identification of Tn5397-like and Tn916-like transposons and diversity of the tetracycline resistance gene tet(M) in enterococci from humans, pigs and poultry. J Antimicrob Chemother. 2006;57(5):832-839. doi:10.1093/jac/dkl069 URL https://academic.oup.com/jac/article/57/5/832/764492

82. Burdett V. Tet(M)-promoted release of tetracycline from ribosomes is GTP dependent. J Bacteriol. 1996;178(11):3246-3251. doi:10.1128/jb.178.11.3246-3251.1996 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC178077/

83. Fiedler S, Bender JK, Klare I, Halbedel S, Grohmann E, Szewzyk U, et al. Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M). J Antimicrob Chemother. 2016;71(4):871-881. doi:10.1093/jac/dkv420 URL https://academic.oup.com/jac/article/71/4/871/2363778

84. Aarestrup FM, Agerso Y, Gerner-Smidt P, Madsen M, Jensen LB. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis. 2000;37(2):127-137. doi:10.1016/s0732-8893(00)00130-9 URL https://pubmed.ncbi.nlm.nih.gov/10863107/

85. Ridenhour MB, Fletcher HM, Mortensen JE, Daneo-Moore L. A novel tetracycline-resistant determinant, tet(U), is encoded on the plasmid pKq10 in Enterococcus faecium. Plasmid. 1996;35(2):71-80. doi:10.1006/plas.1996.0009 URL https://pubmed.ncbi.nlm.nih.gov/8700968/

86. Weigel LM, Donlan RM, Shin DH, et al. Jensen B, Clark NC, McDougal LK High-level vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm. Antimicrob Agents Chemother. 2007;51(1):231-238. doi:10.1128/AAC.00576-06 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797660/

87. Caryl JA, Cox G, Trimble S, O'Neill AJ. "tet(U)" is not a tetracycline resistance determinant. Antimicrob Agents Chemother. 2012;56(6):3378-3379. doi:10.1128/AAC.05957-11 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370814/

88. Grossman TH. Tetracycline Antibiotics and Resistance. Cold Spring Harb Perspect Med. 2016;6(4):a025387. doi:10.1101/cshperspect.a025387 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817740/

89. Said HS, Abdelmegeed ES. Emergence of multidrug resistance and extensive drug resistance among enterococcal clinical isolates in Egypt. Infect Drug Resist. 2019;12:1113-1125. doi:10.2147/IDR.S189341 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510230/

90. Zilhao R, Papadopoulou B, Courvalin P. Occurrence of the Campylobacter resistance gene tetO in Enterococcus and Streptococcus spp. Antimicrob Agents Chemother. 1988;32(12):1793-1796. doi:10.1128/aac.32.12.1793 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC176020/

91. Singh KV, Weinstock GM, Murray BE. An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob Agents Chemother. 2002;46(6):1845-1850. doi:10.1128/aac.46.6.1845-1850.2002 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC127256/

92. Horaud T, Le Bouguenec C, Pepper K. Molecular genetics of resistance to macrolides, lincosamides and streptogramin B (MLS) in streptococci. J Antimicrob Chemother. 1985;16 Suppl A:111-135. doi:10.1093/jac/16.suppl_a.111 URL https://academic.oup.com/jac/article-abstract/16/suppl_A/111/779341?redirectedFrom=fulltext

93. Portillo A, Ruiz-Larrea F, Zarazaga M, Alonso A, Martinez JL, Torres C. Macrolide resistance genes in Enterococcus spp. Antimicrob Agents Chemother. 2000;44(4):967-971. doi:10.1128/aac.44.4.967-971.2000 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC89799/

94. Leavis HL, Willems RJ, Top J, Bonten MJ. High-level ciprofloxacin resistance from point mutations in gyrA and parC confined to global hospital-adapted clonal lineage CC17 of Enterococcus faecium. J Clin Microbiol. 2006;44(3):1059-1064. doi:10.1128/JCM.44.3.1059-1064.2006 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1393140/

95. Onodera Y, Okuda J, Tanaka M, Sato K. Inhibitory activities of quinolones against DNA gyrase and topoisomerase IV of Enterococcus faecalis. Antimicrob Agents Chemother. 2002;46(6):1800-1804. doi:10.1128/aac.46.6.1800-1804.2002 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC127212/

96. Yasufuku T, Shigemura K, Shirakawa T, Matsumoto M, Nakano Y, Tanaka K, et al. Mechanisms of and risk factors for fluoroquinolone resistance in clinical Enterococcus faecalis isolates from patients with urinary tract infections. J Clin Microbiol. 2011;49(11):3912-3916. doi:10.1128/JCM.05549-11 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209098/

97. Lynch C, Courvalin P, Nikaido H. Active efflux of antimicrobial agents in wild-type strains of enterococci. Antimicrob Agents Chemother. 1997;41(4):869-871. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC163815/pdf/410869.pdf

98. Arsène S, Leclercq R. Role of a qnr-like gene in the intrinsic resistance of Enterococcus faecalis to fluoroquinolones. Antimicrob Agents Chemother. 2007;51(9):3254-3258. doi:10.1128/AAC.00274-07 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2043171/


Дополнительные файлы

1. Гены, детерминирующие резистентность энтерококков к аминогликозидам (переведено с иностранного языка [31])
Тема
Тип Прочее
Скачать (12KB)    
Метаданные ▾
2. Характеристика часто выявляемых фенотипов резистентности к гликопептидам у энтерококков (переведено с иностранного языка [45])
Тема
Тип Прочее
Скачать (12KB)    
Метаданные ▾

Рецензия

Для цитирования:


Коменкова Т.С., Зайцева Е.А., Зайцева Е.А. Современные представления о механизмах резистентности к антимикробным препаратам Enterococcus Faecalis и E. Faecium (обзор литературы). Антибиотики и Химиотерапия. 2020;65(11-12).

For citation:


Komenkova T.S., Zaitseva E.A., Zaitseva E.A. ACTUAL VIEW ON ENTEROCOCCUS FAECALIS AND E. FAECIUM RESISTANCE MECHANISMS TO ANTIBIOTICS (LITERATURE REVIEW). Antibiot Khimioter = Antibiotics and Chemotherapy. 2020;65(11-12).

Просмотров: 261


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)