Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Biofilms of Antibiotic-Resistant Propionibacterium Acnes and Their Sensitivity to Antimicrobial Peptides of Staphylococci

Abstract

The article Is devoted to the study of biological properties of antibiotic-resistant bacteria Propionibacterium acnes and their sensitivity to antibacterial cationic peptides varnerin and hominin. P.acnes Ac-1450 strain resistant to rifampicin and tetracycline were obtained by selection. With the help of the Kirby-Bauer disk diffusion test, it is shown that the acquisition of resistance to these antibiotics is accompanied by a decrease in the sensitivity of bacteria to a number of other antibacterial drugs. As a result of the determination of the minimum inhibitory concentrations of cationic peptides, it has been established that the sensitivity of antibiotic-resistant P.acnes strains to varnerin and hominin is maintained at the sensitivity level of the parent strain. Antibiotic-resistant bacteria show a more pronounced ability for adhesion and biofilm formation in comparison with the bacteria of the parent strain, however, the formation of biofilms can be effectively suppressed by staphylococcins. Analysis of the curves of the formation intensity of P.acnes biofilms, depending on the content of peptides in the medium, made it possible to establish concentrations that inhibit the growth of biofilms by 50%. Despite the fact that the values obtained were 5-12 times higher than the MIC values for planktonic culture of P.acnes, staphylococcins are promising drugs for combating infections caused by propionic bacteria.

About the Authors

T. V. Polyudova
Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences; Perm State Agro-Technological University
Russian Federation


D. V. Eroshenko
Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences
Russian Federation


V. P. Korobov
Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences; Perm National Research Polytechnic University
Russian Federation


References

1. Laxminarayan R., Duse A., Wattal C. et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis 2013; 13: 1057-1098.

2. Walsh T.R., Efthimiou J., Dréno B. Systematic review of antibiotic resistance in acne: An increasing topical and oral threat. Lancet Infect Dis 2016; 16: e23-33.

3. Sousa D., Justo I., Dominguez A. et al. Community-acquired pneumonia in immunocompromised older patients: incidence, causative organisms and outcome. Clin Microbiol Infect 2013; 19: 187-192.

4. Harder J., Tsuruta D., Murakami M., Kurokawa I. What is the role of antimicrobial peptides (AMP) in acne vulgaris? Exp Dermatol 2013; 22: 386-391.

5. Furustrand Tafin U, Corvec S., Betrisey B., Zimmerli W., Trampuz A. Role of rifampin against Propionibacterium acnes biofilm in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother 2012; 56: 1885-1891.

6. Oprica C., Nord C.E, Kalenic S. et al. European surveillance study on the antibiotic susceptibility of Propionibacterium acnes. Clin Microbiol Infect 2005; 11: 204-213.

7. Vergidis P., Rouse M.S., Euba G. et al. Treatment with linezolid or vancomycin in combination with rifampin is effective in an animal model of methicillin-resistant Staphylococcus aureus foreign body osteomyelitis. Antimicrob Agents Chemother 2011; 55 (3): 1182-1186.

8. Soderquist B, Holmberg A., Unemo M. Propionibacterium acnes as an etiological agent of arthroplastic and osteosynthetic infections-two cases with specific clinical presentation including formation of draining fistulae. Anaerobe 2010; 16: 304-306.

9. Guarna M., Coulson R., Rubinchik E. Anti-inflammatory activity of cationic peptides: application to the treatment of acne vulgaris. FEMS Microbiol Lett 2006; 257: 1-6.

10. Popovic S., Urban E., Lukic M., Conlon J.M. Peptides with antimicrobial and anti-inflammatory activities that have therapeutic potential for treatment of acne vulgaris. Peptides 2012; 34 (2): 275-282.

11. Kang B.S, Seo J.-G, Lee G.-S. et al. Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect. J Microbiol 2009; 47 (1): 101-109.

12. Furustrand Tafin U, Trampuz A., Corvec S. In vitro emergence of rifampicin resistance in Propionibacterium acnes and molecular characterization of mutations in the rpoB gene. J Antimicrob Chemother 2013; 68: 523-528.

13. Методические указания МУК 4.2.1890-04 «Определение чувствительности микроорганизмов к антибактериальным препаратам». 2004.

14. Ерошенко Д.В., Коробов В.П. Сравнительный анализ формирования и разрушения биоплёнок PIA-отрицательных бактерий Staphylococcus epidermidis под действием гидролитических факторов. Вестник ТГУ Биология. - 2015. - № 1. - С. 28-36.

15. Rosenberg M., Gutnick D., Rosenberg E. Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 1980; 9: 29-33.

16. Коробов В.П., Лемкина Л.М., Полюдова Т.В. Антибактериальный пептид хоминин klp-1 широкого спектра действия. Патент РФ № 2528055. - 2014

17. Коробов В.П., Лемкина Л.М., Полюдова Т.В., Акименко В.К. Выделение и характеристика нового низкомолекулярного антибактериального пептида семейства лантибиотиков. Микробиология. - 2010. - Т. 79. - № 2. - С. 228-238

18. CLSI. Performance standards for antimicrobial susceptibility testing; twenty-second informational supplement. CLSI document M100-S22. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.

19. Stepanovic S., Vukovic D., Hola V. et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007; 115: 891-899.

20. Rautenbach M., Gerstner G.D., Vlok N.M., Kulenkampff J., Westerhoff H.V. Analyses of dose-response curves to compare the antimicrobial activity of model cationic α-helical peptides highlights the necessity for a minimum of two activity parameters. Anal Biochem 2006; 350: 81-90.

21. Коробов В.П., Полюдова Т.В., Лемкина Л.М. Изучение биологических свойств антибиотикорезистентных бактерий Staphylococcus epidermidis 33 и их чувствительности к варнерину. Вестник ПГУ Биология. - 2015. - № 1. - С. 5-14.

22. Kumar R., Malik J.K. Some pharmacokinetic parameters and dosage regimens for a long-acting formulation of oxytetracycline in 6- to 8-month-old male calves. Vet Res Commun 1998; 22 (8): 533-544.

23. Shimomura H., Andachi S., Aono T. et al. Serum concentrations of clarithromycin and rifampicin in pulmonary Mycobacterium avium complex disease: long-term changes due to drug interactions and their association with clinical outcomes. J Pharm Health Care Sci 2015; 1: 32.

24. Селизарова Н.О. Антибиотики, нарушающие синтез макромолекул. Обзоры по клинич. фармакол. и лек. терапии. - 2003. - Т. 2. - № 1. - С. 70-78.

25. Ковалевская Н.П. Интегративные коньюгативные элементы: эволюция микробной резистентности к антибиотикам. Фундаментальные исследования. - 2015. - № 1. - С. 284-289

26. Ishiguro R., Yokoyama Y., Maeda H., Shimamura A., Kameyama K., Hiramatsu K. Modes of conformational changes of proteins adsorbed on a planar hydrophobic polymer surface reflecting their adsorption behaviors. J Colloid Interface Sci 2005; 290: 91-101.

27. Crosby A.H., Schlievert M.P., Merriman J.A., King J.M., Salgado-Pabon W., Horswill A.R. The Staphylococcus aureus global regulator MgrA modulates clumping and virulence by controlling surface protein expression. PLoS Pathog 2016; 12 (5): e1005604.

28. Ding Y., Onodera Y., Lee J.C., Hooper D.C. NorB, an efflux pump in Staphylococcus aureus strain MW2, contributes to bacterial fitness in abscesses. J Bacteriol 2008; 190 (21): 7123-9.

29. Heilmann C., Hussain M., Peters G. et al. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 1997; 24: 1013-1024.

30. Qin Z., Ou Y., Yang L. et al. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiol 2007; 153: 2083-2092.

31. Полюдова Т.В., Коробов В.П., Зидина Н.М. Сравнительный анализ формирования биоплёнок бактериями Propionibacterium acnes Ac-1450 на нативных и обработанных катионными пептидами поверхностях полистирола. Российский иммунологический журнал. Тематический выпуск, приуроченный к Пермскому научному форуму. - 2015. - Т. 9. - № 2. - С. 661-663.

32. Christensen G.J.M., Scholz C.F.P., Enghild J. et al. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genomics 2016;17:152

33. Полюдова Т.В., Лемкина Л.М., Лихацкая Г.Н., Коробов В.П.Оптимизация условий получения и моделирование 3Б-структуры нового антибактериального пептида семейства лантибиотиков. Приклад биохим и микробиол. - 2017. - Т. 53. - № 1. - С. 47-54


Review

For citations:


Polyudova T.V., Eroshenko D.V., Korobov V.P. Biofilms of Antibiotic-Resistant Propionibacterium Acnes and Their Sensitivity to Antimicrobial Peptides of Staphylococci. Antibiot Khimioter = Antibiotics and Chemotherapy. 2018;63(5-6):3-9. (In Russ.)

Views: 780


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)