Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Baricitinib in the Treatment of Patients with COVID-19: A Review of International Data and Analysis of Clinical Results in the Russian Population

https://doi.org/10.37489/0235-2990-2021-66-1-2-47-56

Abstract

The effects of baricitinib, a selective reversible inhibitor of Janus kinase 1 and 2, in the treatment of COVID-19 are associated with different aspects of pathogenesis — inhibition of viral endocytosis, reduction of excessive inflammatory response, and mitigation of vascular and pulmonary damage, which is a strong rationale for using baricitinib to treat patients with COVID-19. In the period from April to May 2020, City Clinical Hospital No. 52 obtained clinical experience of baricitinib clinical use in the therapy of 113 patients with COVID-19: 58 (51%) women and 55 (49%) men, whose average age was 57±12.6 years old. Analysis of the results of using baricitinib showed that therapy with baricitinib against the background of standard pathogenetic therapy was found to be effective in 95 (84%) patients and ineffective in 18 (16%). Significant positive changes were shown in comparison with the baseline level of the following indicators: body temperature (from 37.2±0.8˚C to 36, ±0.68˚C, P=0.000), blood oxygen saturation (from 95.5±3.0% to 96.5±2.2%, P=0.011), C-reactive protein (from 46.1±48.0 mg/L to 33.5±43.7 mg/L, P=0.010 ), National Early Warning Score (NEWS) (from 1.7±1.3 to 1.1±1.2, p=0.001). From the safety point of view, patients showed a slight decrease in the average value of the number of neutrophils — from (3.1±1.4)×109 to (3.0±2.0)×109 and lymphocytes — from (1.8±0,9)×109 to (1.7±0.9)×109, as well as minimal multidirectional changes in the mean values of transaminase activity — alanine aminotransferase changed from 33.9±23.6 U/L to 34.9±47.5 U/L, aspartate aminotransferase — from 40.6±49.0 U/L to 38.5±25.5 U/L. In general, the results obtained within the experience of the clinical use of baricitinib in 113 Russian patients with COVID-19 are consistent with the available data from foreign clinical studies and confirm the efficacy and safety of baricitinib. 
 

About the Authors

А. I. Zagrebneva
City Clinical Hospital No. 52; Pirogov Russian National Research Medical University
Russian Federation

Alena I. Zagrebneva — Ph.D. in medicine

Moscow



Е. А. Baryakh
City Clinical Hospital No. 52
Russian Federation

Elena A. Baryakh — D.Sc. in medicine

Moscow



Е. I. Zhelnova
City Clinical Hospital No. 52
Russian Federation

Evgenia I. Zhelnova — Ph.D. in medicine

Moscow



N. G. Poteshkina
City Clinical Hospital No. 52
Russian Federation

Natalia G. Poteshkina — D.Sc. in medicine, Professor; Pirogov Russian National Research Medical University

Moscow



I. Р. Beloglazova
City Clinical Hospital No. 52
Russian Federation

Irina P. Beloglazova — Ph.D. in medicine

Moscow



Z. Yu. Mutovina
City Clinical Hospital No. 52; Central State Medical Academy
Russian Federation

Zinaida Yu. Mutovina — Ph.D. in medicine

Moscow



I. V. Samsonova
City Clinical Hospital No. 52
Russian Federation

Inna V. Samsonova — Ph.D. in medicine

Moscow



Е. А. Kovalevskaya
City Clinical Hospital No. 52
Russian Federation

Elena A. Kovalevskaya — Ph.D. in medicine

Moscow



V. V. Parshin
City Clinical Hospital No. 52
Russian Federation

Vasily V. Parshin — radiologist

Moscow



V. V. Pshenichnikova
City Clinical Hospital No. 52
Russian Federation

Vera V. Pshenichnikova — Ph.D. in medicine

Moscow



D S. Fomina
City Clinical Hospital No. 52; Pirogov Russian National Research Medical University
Russian Federation

Daria S. Fomina — Ph.D. in medicine

Moscow



Т. S. Kruglova
City Clinical Hospital No. 52
Russian Federation

Tatyana S. Kruglova — Allergologist, Immunologist

Moscow



М. А. Lysenko
City Clinical Hospital No. 52; Pirogov Russian National Research Medical University
Russian Federation

Maryana A. Lysenko — D.Sc. in medicine

Moscow



М. А. Dranitsyna
Center of Scientific Advice LLC
Russian Federation

Margarita A. Dranitsyna — biostatistician

Moscow



References

1. WHO. Coronavirus 2019. https://www.who.int/dg/speeches/detail/whodirector-general-s-opening-remarks-at-the-media-briefing-on-covid19---11-march-2020 Доступ 18.11.2020.

2. van Doremalen N., Bushmaker T., Morris D.H., Holbrook M.G., Gamble A., Williamson B.N., Tamin A., Harcourt J.L., Thornburg N.J., Gerber S.I., Lloyd-Smith J.O., de Wir E., Munster V.J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020; 382 (16): 1564–1567. doi: 10.1056/nejmc2004973

3. Zhang R., Li Y., Zhang A.L., Wang Y., Molina M.J. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc Natl Acad Sci USA. 2020; 117 (26): 14857–14863. doi: 10.1073/pnas.2009637117.

4. Xu Y., Li X., Zhu B., Liang H., Fang C., Gong Y., Guo Q., Sun X., Zhao D., Shen J., Zhang H., Liu H., Xia H., Tang J., Zhang K., Gong S. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med. 2020; 26 (4): 502–505. doi: 10.1038/s41591-020-0817-4

5. Siddiqi H.K., Mehra M.R. COVID-19 illness in native and immunosuppressed states: a clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020; 39 (5): 405–407. doi: 10.1016/j.healun.2020.03.012

6. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020 Apr 7; 323 (13): 1239–1242. doi: 10.1001/jama.2020.2648

7. Kumar P., Sah A.K., Tripathi G., Kashyap A., Tripathi A., Rao R., Mishra P.C., Mallick K., Husain A., Kashyap M.K. Role of ACE2 receptor and the landscape of treatment options from convalescent plasma therapy to the drug repurposing in COVID-19 [published online ahead of print, 2020 Oct 7]. Mol Cell Biochem. 2020; 1-22. doi: 10.1007/s11010-020-03924-2

8. Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N. et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020; 181 (5): 1016–1035. e19. doi: 10.1016/j.cell.2020.04.035 9. Cantini F., Goletti D., Petrone L., Najafi Fard S., Niccoli L., Foti R. Immune Therapy, or Antiviral Therapy, or Both for COVID-19: A Systematic Review [published online ahead of print, 2020 Oct 17]. Drugs. 2020; 1–18. doi:10.1007/s40265-020-01421-w

9. Prompetchara F., Ketloy C., Tanapat Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020; 38 (1): 1–9. doi: 10.12932/ap-200220-0772

10. Cossarizza A., De Biasi S., Guaraldi G., Girardis M., Mussini C. Modena Covid-19 Working Group SARS-CoV-2, the virus that causes COVID-19: cytometry and the new challenge for global health. Cytometry A. 2020; 97 (4): 340–343. doi: 10.1002/cyto.a.24002

11. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. et al. Clinical characteristics of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497–506. doi: 10.1016/S0140-6736(20)30183-5

12. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., Xie C., Ma K., Shang K., Wang W., Tian D-S. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020 Jul 28; 71 (15): 762–768. doi: 10.1093/cid/ciaa248

13. Quartuccio L., Sonaglia A., Pecori D., Peghin M., Fabris M., Tascini C., De Vita S. Higher levels of IL-6 early after tocilizumab distinguish survivors from nonsurvivors in COVID-19 pneumonia: a possible indication for deeper targeting of IL-6. J Med Virol. 2020 Nov., 92 (11): 2852–2856. doi: 10.1002/jmv.26149

14. Pacha O., Sallman M.A., Evans S.E. COVID-19: a case for inhibiting IL-17? Nat Rev Immunol. 2020; 20 (6): 345–346. doi: 10.1038/s41577-020-0328-z

15. Catanzaro M., Fagiani F., Racchi M., Corsini E., Govoni S., Lanni C. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct Target Ther. 2020; 5 (1): 84. Published 2020 May 29. doi: 10.1038/s41392-020-0191-1

16. Государственный реестр лекарственных средств, инструкция по медицинскому применению лекарственного препарата Олумиант: http://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=326e58c663c8-43ca-bc82-66ea578c9aed&t= Доступ 18.11.2020.

17. Low Z.Y., Farouk I.A., Lal S.K. Drug repositioning: new approaches and future prospects for life-debilitating diseases and the COVID-19 Pandemic Outbreak. Viruses. 2020; 12 (9): 1058. Published 2020 Sep 22. doi:10.3390/v12091058

18. Sorrell F.J., Szklarz M., Abdul Azeez K.R., Elkins J.M., Knapp S. Familywide structural analysis of human numb-associated protein kinases. Struct Lond Engl. 2016; 24: 401–411. doi: 10.1016/j.str.2015.12.015

19. Stebbing J., Krishnan V., de Bono S., Ottaviani S., Casalini G., Richardson P.J., Monteil V., Lauschke V.M., Mirazimi A., Youhanna S., Tan Y-J., Baldanti F., Sarasini A., Terres J.A.R., Nickoloff B.J., Higgs R.E., Rocha G., Byers N.L., Schlichting D.E., Nirula A., Cardoso A., Corbellino M., Sacco Baricitinib Study Group. Mechanism of baricitinib supports artificial intelligencepredicted testing in COVID-19 patients. EMBO Mol Med. 2020; 12 (8): e12697. doi: 10.15252/emmm.202012697

20. Pujari R., Thommana M.V., Ruiz Mercedes B., Serwat A. Therapeutic Options for COVID-19: A Review. Cureus. 2020; 12 (9): e10480. Published 2020 Sep 16. doi: 10.7759/cureus.10480

21. Praveen D., Puvvada R.C., M V.A. Janus kinase inhibitor baricitinib is not an ideal option for management of COVID-19. Int J Antimicrob Agents. 2020; 55: 105967. doi: 10.1016/j.ijantimicag.2020.105967

22. Zhang W., Zhao Y., Zhang F., Wang O., Li T., Liu Z., Wang J., Qin Y. Zhang X., Yan X., Zeng X., Zhang S. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China. Clin Immunol. 2020; 214: 108393. doi: 10.1016/j.clim.2020.108393

23. Cantini F., Niccoli L., Matarrese D., Nicastri E., Stobbione P., Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020; 81(2): 318–356. doi: 10.1016/j.jinf.2020.04.017

24. Cantini F., Niccoli L., Nannini C., Matarrese D., Di Natale M.E., Lotti P., Aquilini D., Landini G., Cimolato B., Di Pietro M.A., Trezzi M., Stobbione P., Frausini G., Navarra A., Nicastri E., Sotgiu G., Goletti D. Beneficial impact of Baricitinib in COVID-19 moderate pneumonia; multicentre study. J Infect. 2020; 81 (4): 647–679. doi:10.1016/j.jinf.2020.06.052

25. U.S. Food & Drug Administration. Letter on the Emergency Use Authorization in the US. Official web site of the U.S. Food & Drug Administration. 19 November 2020 г. https://www.fda.gov/media/143822/download Доступ 30.11.2020.

26. U.S. Food & Drug Administration. Letter on the Emergency Use Authorization in the US. Official web site of the U.S. Food & Drug Administration. 19 November 2020 г. https://www.fda.gov/media/143822/download Доступ 30.11.2020.


Review

For citations:


Zagrebneva А.I., Baryakh Е.А., Zhelnova Е.I., Poteshkina N.G., Beloglazova I.Р., Mutovina Z.Yu., Samsonova I.V., Kovalevskaya Е.А., Parshin V.V., Pshenichnikova V.V., Fomina D.S., Kruglova Т.S., Lysenko М.А., Dranitsyna М.А. Baricitinib in the Treatment of Patients with COVID-19: A Review of International Data and Analysis of Clinical Results in the Russian Population. Antibiot Khimioter = Antibiotics and Chemotherapy. 2021;66(1-2):47-56. (In Russ.) https://doi.org/10.37489/0235-2990-2021-66-1-2-47-56

Views: 2885


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)