Preview

Антибиотики и Химиотерапия

Расширенный поиск

Полифенолы из наземных и морских растений как ингибиторы репродукции коронавирусов

https://doi.org/10.37489/0235-2990-2021-66-3-4-62-81

Полный текст:

Аннотация

В настоящем обзоре представлены материалы последних лет, касающиеся важнейшей проблемы современности — поиску новых ингибиторов репродукции коронавирусов. В качестве перспективных соединений такого плана рассматриваются полифенольные соединения из наземных и морских растений, поливалентные биорегуляторы, обладающие множественной биологической активностью. Полифенолы способны вмешиваться в разные этапы жизненного цикла вирусов, что характеризует их как многоцелевые препараты, действующие на жизненно важные белки возбудителя. Вместе с тем, авторы обзора обращают внимание на то, что для разработки лекарственных препаратов на основе растительных полифенолов необходимо преодолеть достаточно много трудностей, поскольку эти соединения характеризуются сложностью структур, низкой биодоступностью и быстрым выведением из организма. Кроме того, требуется проведение глубоких исследований in vivo на животных, а также в клинических условиях. Несмотря на все трудности, растительные полифенолы со временем должны найти свое место в качестве кандидатов для создания на их основе противовирусных лекарственных средств, биологически активных добавок к пище и продуктов функционального питания.

Об авторах

Н. Н. Беседнова
НИИ эпидемиологии и микробиологии им. Г. П. Сомова
Россия

Беседнова Наталия Николаевна — д. м. н., профессор, академик РАН, главный научный сотрудник лаб. иммунологии 

eLIBRARY SPIN-код: 8931-9002. Scopus Author ID: 7006805123

ул. Сельская, 1, г. Владивосток, 690087



Б. Г. Андрюков
НИИ эпидемиологии и микробиологии им. Г. П. Сомова; Дальневосточный филиал НИИ военной медицины
Россия

Андрюков Борис Георгиевич — д. м. н., ведущий научный сотрудник лаборатории молекулярной микробиологии

ResearcherID: J-3752-2018. eLIBRARY SPIN-код: 7757-3838. Scopus Author ID: 57191370698

Владивосток



Т. С. Запорожец
НИИ эпидемиологии и микробиологии им. Г. П. Сомова
Россия

Запорожец Татьяна Станиславовна — д. м. н., главный научный сотрудник лаборатории иммунологии 

ResearcherID: Y-9425-2018. eLIBRARY SPIN-код: 8931-9002. Scopus Author ID: 7006805123

Владивосток



Т. А. Кузнецова
НИИ эпидемиологии и микробиологии им. Г. П. Сомова
Россия

Кузнецова Татьяна Алексеевна — д. м. н., главный научный сотрудник лаборатории иммунологии

ResearcherID: I-8399-2018. eLIBRARY SPIN-код: 2359-1132. Scopus Author ID: 7202571979

Владивосток



С. П. Крыжановский
Медицинское объединение ДВО РАН
Россия

Крыжановский Сергей Петрович — д. м. н., ученый секретарь

Владивосток



Л. Н. Федянина
Дальневосточный федеральный университет
Россия

Федянина Людмила Николаевна — д. м. н., профессор Департамента Фундаментальной медицины Школы биомедицины 

ResearcherID: AAG-4121-2019. eLIBRARY SPIN-код: 9803-6837. Scopus Author ID: 24481010600

Владивосток



И. Д. Макаренкова
НИИ эпидемиологии и микробиологии им. Г. П. Сомова
Россия

Макаренкова Илона Дамировна — д. м. н., ведущий научный сотрудник лаборатории иммунологии 

ResearcherID: B-6799-2018. eLIBRARY SPIN-код: 3213-4380. Scopus Author ID: 6507363521

Владивосток



И. В. Галкина
Дальневосточный федеральный университет
Россия

Галкина Ирина Вячеславовна — к. м. н., ведущий научный сотрудник Школы биомедицины 

eLIBRARY SPIN-код: 7224-0756. Sopus Author ID: 7003393038

Владивосток



М. Ю. Щелканов
НИИ эпидемиологии и микробиологии им. Г. П. Сомова; Дальневосточный федеральный университет; ФНЦ биоразнообразия наземной биоты Восточной Азии ДВО РАН; Национальный научный центр морской биологии им. А. В. Жирмунского ДВО РАН
Россия

Щелканов Михаил Юрьевич — д. б. н., директор; зав.кафедрой эпидемиологии, микробиологии и паразитологии с Международным научно-образовательным Центром биологической безопасности Школы биомедицины; зав. лабораторией вирусологии

ResearcherID: L-6164-2016. eLIBRARY SPIN-код: 5736-7230. Scopus Author ID: 7004251692

Владивосток



Список литературы

1. История изучения и современная классификация коронавирусов (Nidovirales: Coronaviridae). Инфекция и иммунитет. 2020; 10(2): 221–246. doi: 10.15789/2220-7619-HOI-1412.

2. World Health Organization. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 (based on data as of the 31 December 2003). URL: https: //www.who.int/csr/sars/country/table2004_04_21/en/ (date of request: 07.01.2021).

3. Щелканов М.Ю., Колобухина Л.В., Львов Д.К. Коронавирусы человека (Nidovirales, Coronaviridae): возросший уровень эпидемической опасности. 2013; 10: 49–54. doi: 10.15789/2220-7619-CEC-1473. (in Russian).

4. John S.E. St., Tomar S., Stauffer S.R., Mesecar A.D. Targeting zoonotic viruses: structure-based inhibition of the 3C-like protease from bat coronavirus HKU4 – the likely reservoir host to the human coronavirus that causes Middle East respiratory syndrome (MERS). Bioorg Med Chem. 2015; 23 (17): 6036–6048. doi: 10.1016/j.bmc.2015.06.039.

5. Gribova V.V., Okun D.B., Shalfeeva E.A., Shcheglov B.O., Shchelkanov M.Yu. Cloud service for the differential clinical diagnostics of acute respiratory viral diseases (including those associated with highly contagious coronaviruses) with an application of methods of artificial intelligence. Yakut Medical Journal. 2020; 2: 44–47. doi: 10.25789/YMJ.2020.70.13.

6. Ryu S., Chun B.C. An interim review of the epidemiological characteristics of 2019 novel coronavirus. Epid Health. 2020; 42: e2020006. doi: 10.4178/epih.e2020006.

7. Wu F., Zhao S., Yu B. et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020; 579 (7798): 265–269. doi: 10.1038/s41586-020-2008-3.

8. Gorbalenya A.E., Baker S.C., Baric R.S. et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses — a statement of the coronavirus study group. bioRxiv. 2020; id: 2020.02.07.937862. doi: 10.1101/2020.02.07.937862.

9. Wong M.C., Cregeen S., Ajami N.J., Petrosino J.F. Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019. bioRxiv. 2020; id: 2020.02.07.939207. doi: 10.1101/2020.02.07.939207.

10. World Health Organization. Coronavirus disease 2019 (COVID-19). Situation Report 51 (11 March 2020). URL: https: //www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10 (date of request: 07.01.2021).

11. World Health Organization. Weekly epidemiological update — 29 December 2020 URL: https: //www.who.int/publications/m/item/weekly-epidemiological-update---29-december-2020 (date of request: 07.01.2021).

12. Bhatia S., Giri S., Lal A., Singh S. Identification of potential inhibitors of dietary polyphenols for SARS-CoV-2 M protease: an in silico study. Tropical Publ. Health. 2020; 1 (1): 21-29.

13. Colunga Biancatelli R.M.L., Berrill M., Catravas J.D., Marik P.E. Quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front. Immunol. 2020; 11: 1451. doi: 10.3389/fimmu.2020.01451.

14. Halliwell B. Dietary polyphenols: good, bad, or indifferent for your health? Cardiovasc. Res. 2007; 73 (2): 341–347. doi: 10.1016/j.cardiores.2006.10004.

15. Liu R.H. Dietary bioactive compounds and their health implications. Food Science. 2013; 78 (s1): A18–A25. doi: 10.1111/1750-3841.12101.

16. Ottaviani J.L., Momma T.Y., Heiss C. et al. The stereochemical configuration of flavonols influences the level and metabolism of flavonols in humans and their biological activity in vivo. Free Radic. Biol. Med. 2011; 50: 237–244. doi: 10.1016/j.freeradbiomed.2011.12.010.

17. Quideau S., Deffieux D., Douat-Casassus C., Pouysegy L. Plant polyphenols: chemical properties, biological activities and synthesis. Angew Chem Int Ed Engl. 2011; 50 (3): 586–621.

18. Ryu Y.B., Jeong H.J., Kim J.H. et al. Biflavonoids from Torreya nucifera displaying SARS-CoV-3CLpro inhibition. Bioorg Med Chem. 2010; 18 (22): 7940–7947. doi: 10.1016/j.bmc.2010.09.035.

19. Xiao Z-P., Peng Z-Y., Peng M-G. et al. Flavonoids health benefits and their molecular mechanism. Mini Rev Med Chem. 2011; 11 (2): 169–177. doi: 10.2174/138955711794519546.

20. Russo D. Flavonoids and the Structure-Antioxidant Activity Relationship. J Pharmacogn Nat Prod. 2018; 4: e109. doi: 10.4172/2472-0992.1000e109.

21. Spagnuolo C., Moccia S., Russo G.L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem. 2018; 153: 105–115. doi: 10.1016/j.ejmech.2017.09.001.

22. Musarra-Pizzo M., Ginestra G., Smeriglio A. et al. The antimicrobial and antiviral activity of polyphenols from almond (Prunus dulcis L.) skin. Nutrients. 2019; 11 (10): 2355. doi: 10.3390/nu11102355.

23. Ruiz-Ruiz J.K., Aldana G.C.E., Cruz A.I.C., Campos M.R.S. 9-antioxidant activity of polyphenols extracted from hop used in graft beer. Biotechnol Progress Beverage Consumption. 2020; 19: 283–310.

24. Francisco V., Costa G., Neves B.M. et al. Anti-inflammatory activity of polyphenols on dendritic cells. In book: Polyphenols in Human Health and Disease. 2013; 373–392. doi: 10.1016/B978-o012-398456-2.00028-1.

25. Mileo A.M., Nistico P., Miccadei S. Polyphenols: immunomodulatory and therapeutic implication in colorectal cancer. Front Immunol. 2019; 10: 729. doi: 10.3389/fimmu.2019.00729.

26. Hano C., Tungmunnithum D. Plant polyphenols, more than just simple natural antioxidants: oxidative stress, aging and age related disease. Medicines (Basel). 2020; 7 (5): 26. doi: 10.3390/medicines7050026.

27. Veckenstedt A., Güttner J., Béládi I. Synergistic action of quercetin and murine alpha/beta interferon in the treatment of Mengo virus infection in mice. Antiviral Res. 1987; 7 (3): 169–178. doi: 10.1016/0166-3542(87)90005-2.

28. Lee S., Lee H.H., Shin Y.S. et al. The anti-HSV-1 effect of quercetin is dependent on the suppression of ThR-3 in RAW264.7 cells. Arch Pharm Res. 2017; 40: 623–630. doi: 10.1007/s12272-017-0898-x..

29. Hung P-Y., Ho B-C., Lee S-Y. et al. Houttuynia cordata targets the beginning stage of Herpes simplex virus infection. PLoS ONE. 2015; 10 (2): e0115475. doi: 10.1371/journal.pone.0115475.

30. Schwarz S., Sauter D., Wang K. et al. Kaempferol derivates as antiviral drugs against. Planta Med. 2014; 80 (02/03): 177–182. doi: 10.1055/s-0033-1360277.

31. Lalani S., Poh C.L. Flavonoids as antiviral agents for enterovirus A71 (EV-A71). Viruses. 2020; 12 (2): 184. doi: 10.3390/v12020184.

32. Kang S.Y., Kang J-Y., Oh M-J. Antiviral activities of flavonoids isolated from the bark of Rhus verniciflua stokes against, fish pathogenic viruses in vitro. J. Microbiol. 2012; 50: 293–300. doi: 10.1007/s12275-012-2068-7.

33. Johari J., Kianmehr A., Bakar S.A. et al. Antiviral activity of baikalein and quercetin against the Japanese encephalitis virus. Int J Mol Sci. 2012; 13 (12): 16785–16795. doi: 10.3390/ijms131216785.

34. Леонова Г.Н., Шутикова А.Л., Лубова В.А., Майстровская О.С. Ингибирующая активность флавоноидов байкальского шлемника в отношении вируса клещевого энцефалита. Бюллетень экспериментальной биологии и медицины. 2019; 168 (11): 611– 614.

35. Song J.M., Seong B.L. Tea catechins as a potential alternative anti-infectious agent. Expert Rev Anti-Infect Ther. 2007; 5 (3): 497–506. doi: 10.1586/14787210.5.3.497.

36. Xu J., Xu Z., Zheng W. A review of the antiviral role of green tea catechins. Molecules. 2017; 22 (8): 1337. doi: 10.3390/molecules22081337.

37. Tran J. Green tea: a potential alternative anti-infectious agent catechins and viral infection. Advances in anthropology. 2013; 3: 198-202. doi: 10.4236/aa.2013.34028.

38. Abba Y., Hassim H., Hamzah H., Noordin M.M. Antiviral activity of resveratrol against human and animal viruses. Adv Virol. 2015; 2015: 184241. doi: 10.1155/2015/184241.

39. Pandey A., Khan M.K., Hamurcu M., Gezgin S. Natural plant products: a less focused aspect for the COVID-19 viral outbreak. Front Plant Sci. 2020; doi: 10.3389/fpls.2020.568890.

40. Marinella M.A. A summary of selected phytonutrient dense foods: is there data? Metronomic Phytonutrition: how daily, regular intake of plant-based foods may decrease cancer risk. Anchorage A.K.: Beacon Publishing and Design; 2017: 120. doi: 1111ijcp.13535.

41. Neves R., Lúcio M., Martins S. et al. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomedicine. 2013; 8 (1): 177–187. doi: 10.2147/IJN.S37840.

42. Wells M.L., Potin, P., Craigie J.S. et al. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol. 2017; 29: 949– 982. doi: 10.1007/s10811-016-0974-5.

43. Santos S.A.O., Félix R., Pais A.C.S. et al. The quest for phenolic compounds from macroalgae: A review of extraction and identification methodologies. Biomolecules. 2019. 9: 847. doi: 10.3390/biom9120847.

44. Cotas J., Leandro A., Monteiro P. et al. Seaweed phenolics: from extraction to applications. Mar Drugs. 2020; 18 (8): 384. doi: 10.3390/md18080384.

45. Padua D., Rocha E., Garguilo D., Ramos A.A. Bioactive compounds from brown seaweeds: phloroglucinol, fucoxanthin and fucoidan as promising therapeutic agents against breast cancer. Phytochemistry Letters. 2015; 14: 91–98. doi: 10.1016/j.phytol.2015.09.007.

46. Moghaddam J.A., Davilla-Cespedes A.M., Kehraus S. et al. Cyclopropanecontaining fatty acids from the marine bacterium Labrenzia sp. 011 with antimicrobial and GPR84 activity. Mar Drugs. 2018; 16 (10): 369. doi: 10.3390/md16100369.

47. Santhi L.S., Talluri V.P.,Nagendra S.Y., Krishna R.E. Bioactive compounds from marine sponge associates: antibiotics from Bacillus sp. Natural products Chemistry Res. 2017; 05(06): 4. doi: 10.4172/2329-6836.1000266.

48. Riccio G., Lauritano C. Microalgae with immunomodulatory activities. Mar Drugs. 2020; 18 (1): 2. doi: 10.3390/md18010002.

49. Pedrosa R., Gaudencio S., Vasconcelos V. XVI international symposium on marine natural products. Mar Drugs. 2020; 18 (1): 40. doi: 10.3390/md18010040.

50. Malve H. Exploring the ocean for new drug developments: marine pharmacology. J. Pharm. Bioallied Sci. 2016; 8 (2): 83–91. doi: 10.4103/0975-7406.171700.

51. Kim E.B., Kwak J.H. Antiviral phlorotannin from Esenia bicyclis against human papilloma virus in vitro. Planta Med. 2015; 81-PW_22. doi: 10.1055/s-0035-1565646.

52. Eom S-H., Moon S-Y., Lee D-S et. al. In vitro antiviral activity of dieckol and phlorofucofuroeckol-A isolated from edible brown alga Eisenia bicyclis against murine norovirus. Algae. 2015; 30 (3): 241–246. doi: 10.4490/algae.2015.30.

53. Yang H.K., Jung M.H., Avunje S. et al. Efficacy of algal Ecklonia cava extract against viral haemorrhagic septicemia virus (VHSV). Fish Shellfish Immunol. 2018; 72: 273-281. doi: 10.1016/j.fsi.2017.10.044.

54. Cho H.M., Doan T.P., Ha T.K. et al. Dereplication by high-perfomance liquid chromatography (HPLC) with quadrupole-time-of-flight mass-spectroscopy (qTOF-MS) and antiviral activities of phlorotannins from Ecklonia cava. Mar Drugs. 2019; 17 (3): 149. doi: 10.3390/md17030149.

55. Ryu Y.B., Jeong H.J., Yoon S.Y. et al. Influenza virus neuraminidase inhibitory activity of phlorotannins from edible brown alga Ecklonia cava. J Agric Food Chem. 2011; 59 (12): 6467–6473. doi: 10.1021/jf2007248.

56. Ahn M.J., Yoon K.D., Kim C.Y. et al. Inhibitory activity on HIV-1 reverse transcriptase and integrase of a carmalol derivative from a brown alga Ishige ocamurae. Phytother Res. 2006; 20: 711–713. doi: 10.1002/ptr.1939.

57. Wink M. Potential of DNA intercalating alcaloids and other plant secondary metabolites against SARS-CoV-2 causing COVID-19. Diversity. 2020; 12 (5): 175. doi: 10.3390/d12050175.

58. Liu J., Zheng X., Tong Q. et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol. 2020; 92 (5): 491–494. doi: 10.1002/jmv.25709.

59. De Wit E., van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016; 14: 523–534. doi: 10.1038/nrmicro.2016.81.

60. Prasad S., Potdar V., Cherian S. et al. Transmission electron microscopy imaging of SARS-CoV-2 // The Indian Journal of Medical Research. 2020; 151 (2–3): 241–243. doi: 10.4103/ijmr.IJMR_577_20

61. Никифоров В.В., Колобухина Л.В., Сметанина С.В. и др. Новая коронавирусная инфекция (COVID-19): этиология, эпидемиология, клиника, диагностика, лечение и профилактика. Учебно-методическое пособие. М.: 2020; 71.

62. Гарафуддинов Р.Р., Мавзютов А.Р., Алексеев Я.И. и др. Бетакоронавирусы человека и их высокочувствительная детекция с помощью ПЦР и прочих методов амплификации. Биомика. 2020; 12 (1): 121–179. doi: 10.31301/2221-6197.bmcs.2020-7.

63. Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181 (2): 271–280. doi: 10.1016/j.cell.2020.02.052.

64. Helal M.A., Shouman S., Abdelwaly A. et al. Molecular basis of the potential interaction of SARS-CoV-2 spike protein to CD147 in COVID-19 associated-lymphopenia. J Biomol Struct Dyn. 2020; 9: 1–11. doi: 10.1080/07391102.2020.1822208.

65. Zamorano Cuervo N., Grandvaux N. ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. Elife. 2020; 9: id: e61390. doi: 10.7554/eLife.61390.

66. Perez-Miller S., Patek M., Moutal A. et al. In silico identification and validation of inhibitors of the interaction between neuropilin receptor 1 and SARS-CoV-2 spike protein. bioRxiv. 2020. doi: 10.1101/2020.09.22.308783.

67. Mayi B.S., Leibowitz J.A., Woods A.T. et al. The role of neuropilin-1 in COVID-19. PLoS Pathog. 2021; 17 (1): id: e1009153. doi: 10.1371/journal.ppat.1009153.

68. Forster P., Forster L., Renfrew C., Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci. USA. 2020; 117 (17): 9241–9243. doi: 10.1073/pnas.2004999117.

69. Srinivasan S., Cui H., Gao Z. Structural Genomics of SARS-CoV-2 indicates evolutionary conserved functional regions of viral proteins. Viruses. 2020; 12 (4): 360. doi: 10.3390/v12040360.

70. Singh S., Fulbadu S.K., Kar P., Sadhukhan S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J Biomol Struct Dyn. 2020; 7: 1–16. doi: 10.1080/07391102.2020.1796810.

71. Liu Y., Liu J., Pang X. et al. The roles of direct recognition by animal lectins in antiviral immunity and viral pathogenesis. Molecules. 2015; 20: 2272–2295. doi: 10.3390/molecules20022272.

72. Bosch B.J., van der Zee R., de Haan C.A.M., Rottier P.J.M. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003; 77: 8801–8811. doi: 10.1128/JVI.77.16.8801-8811.2003.

73. Song W., Gui M., Wang X., Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 2018; 14 (8): e1007236. doi: 10.1371/journal.ppat.1007236.

74. Keyaerts E., Vijgen L., Pannecouque C. et al. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antivir Res. 2007; 75: 179–187. doi: 10.1016/j.antiviral.2007.03.003.

75. Yi L., Li Z., Yuan K., Qu X. et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol. 2004; 78: 11334. doi: 10.1128/JVI.78.20.11334-11339.2004.

76. Ngwa W., Kumar R., Thompson D., Lyerly W., Moore R., Reid T.E., Lowe H., Toyang N. Potential of flavonoid-inspired phytomedicines against COVID-19. Molecules. 2020; 25 (11): 2707. doi: 10.3390/molecules25112707.

77. Yang B., Dong Y., Wang F., Zhang Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules. 2020; 25 (20): 4613. doi: 10.3390/molecules25204613.

78. Зверев Я.Ф. Флавоноиды глазами фармаколога. Особенности и проблемы фармакокинетики. Обзоры по клинической фармакологии и лекарственной терапии. 2017; 15 (2): 4–11. doi: 10.17816/RCF1524-11.

79. Крылова Н.В., Леонова Г.Н., Майстровская О.С. и др. Изучение активности препарата Люромарин in vitro в отношении вируса клещевого энцефалита. Антибиотики и химиотер. 2010; 55 (7–8): 17–19.

80. Theoharides T.C. COVID-19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin. Biofactors. 2020; 46 (3): 306–308. doi: 10.1002/biof.1633.

81. Surucic R., TubicB., Stojiljkovic M.P. et al. Computational study of pomegranate peelextract as potential inhibitors of SARS-CoV-2 virus internalization. Mol Cell Biochem. 2020; 16: 1–15. doi: 10.1007/s11010-020-03981-7.

82. Ho T.Y., Wu S.L., Chen J.C. et al. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antivir Res. 2007; 74: 92–101. doi: 10.1016/j.antiviral.2006.04.014.

83. Omolo C.A., Soni N., Fasiku V.O. et al. Update on therapeutic approaches and emerging therapies for SARS-CoV-2 virus. Eur J Pharmacol. 2020; 883: 173348.

84. Yamamoto M., Matsuyama S., Li X. et al. Identification of nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob Agents Chemother. 2016; 60: 6532–6539. doi: 10.1128/AAC.01043-16.

85. Ubani A., Agwom F., Morenikeji O.R. et al. Molecular docking analysis of some phytochemicals on two SARS-CoV-2 targets. BioRxiv. 2020. doi: 10.1101/2020.03.31.017657. 03.31.017657.

86. Tallei T.E., Tumilaar S.G., Niode N.J. et al. Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: a molecular docking study. Preprints. 2020. doi: 10.20944/preprints202004.0102.v1.

87. Bhatia S., Giri S., Lal A., Singh S. Identification of potential inhibitors of dietary polyphenols for SARS-CoV-2 M protease: an in silico study. Tropical Publ Health. 2020; 1 (1): 21–29. http: //journals.hainmc.edu.cn/tph/home

88. Kwon H.J., Ryu Y.B., Kim Y.M. et al. In vitro antiviral activity of phlorotannins isolated from Ecklonia cava against porcine epidemic diarrhea coronavirus infection and hemagglutination. Bioorg Med Chem. 2013; 21: 4706–4713. doi: 10.1016/j.bmc.2013.04.085.

89. Abd El-Aziz N.M., Shehata M.G., Awed O.M., El-Sohaimy S.A. Inhibition of COVID-19 RNA-dependent RNA polymerase by natural bioactive compounds: molecular docking analysis. doi: 10.21203/rs.3.rs-25850/v1. Preprint.

90. Rameshkumar M.K., Indu P., Arunagirinatan N. et al. Computational selection of flavonoid compounds as inhibitors against SARS-CoV-2 main protease, RNA-dependent RNA-polymerase and spicke proteins: a molecular docking study. Saudi J. of Biological Sciences. 2020. doi: 10.1016/j.sjbs.2020.10.028.

91. Harcourt B. H., Jukneliene D., Kanjanahaluethai A. et al. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol. 2004; 78 (24): 13600–13612. doi: 10.1128/JVI.78.24.13600-13612.2004.

92. Boopathi S., Poma A. B., Kolandaivel P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics. 2020; 1–10. doi: 10.1080/07391102.2020.1758788.

93. Jin Z., Du X., Xu Y. et al. Structure of M(pro) from COVID-19 virus and discovery of its inhibitors. Nature. 2020; 582: 289–293. 10.1038/s41586-020-2223-y.

94. Скворцов В.С., Дружиловский Д.С., Веселовский А.В. Потенциальные ингибиторы протеазы 3СLpro вируса СOVID-19: репозиционирование лекарств. Biomedical Chemistry: Research and Methods. 2020; 3 (1): e00124. doi: 10.18097/BMCRM00124.

95. Rathnayake A.D., Zheng J., Kim Y. et al. 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV-infected mice. Sci Transl Med. 2020; 12 (557): eabc5332. doi: 10.1126/scitranslmed.abc5332.

96. Jang M., Park Y-I., Cha Y-E. et al. Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Evid Based Complement Alternat Med.2020. Article ID 5630838. doi: 10.1155.2020.5630838.

97. Ghosh R., Chakraborty A., Biswas A., Chowdhuri S. Evaluation of green tea polyphenols as novel corona virus SARS-CoV-2 main protease (Mpro) inhibitors — an in silico docking and molecular dynamics simulation study. J Biomol Struct Dyn. 2020: 1–13 doi: 10.1080/07391102.2020.1779818.

98. Anwar N., Teo Y., Joash T. The role of plant metabolites in drug discovery: current challenges and future perspectives. In: M.K.Swamy, M.S.Akhtar, ed. Natural Bio-active Compounds, Vol 2: Chemistry, Pharmacology and Health Care Practices. NY: Springer Publications. 2019; 25–51.

99. Park J-Y., Kim J.H., Kwon J.M. et al. Dieckol, a SARS-COV 3CLpro inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg Med Chemy. 2013; 21: 3730-3737. doi: 10.1016/j.bmc.2013.04.026.

100. Park J.-Y., Yuk H.J., Ryu H.W. et al. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J Enzyme Inhib Med Chem. 2017, 32, 504–512. doi: 10.1080/14756366.2016.1265519.

101. Gentil D., Patamia V., Scala A. et al. Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: a virtual screening and molecular modeling study. Mar Drugs. 2020; 18 (4): 225. doi: 10.3390/md18040225.

102. Liu L., Heinrich M., Myers S., Dworjanyn S.A. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: a phytochemical and pharmacological review. J Ethnopharmacol. 2012; 142: 591–619. doi: 10.1016/j.jep.2012.05.046.

103. Li Y., Fu X., Duan D., Liu X., Xu J., Gao X. Extraction and identification of phlorotannins from the brown alga, Sargassum fusiforme (Harvey) Setchell. Mar Drugs. 2017; 15: 49. doi: 10.3390/md15020049.

104. Al-Hatamleh M.A.I., Hatmal M.M., Sattar K. et al. Antiviral and immunomodulatory effects of phytochemicals from honey against COVID-19: potential mechanisms of action and future directions. Molecules. 2020; 25 (21): 0. doi: 10.3390/molecules25215017.

105. Piccolella S., Crescente G., Faramarzi S. et al. Polyphenols vs. coronaviruses: howfar has research moved forward? Molecules. 2020; 25 (18): 4103. https: //doi.org/10.3390/molecules25184103

106. Shiryaev V.A., Klimochkin Yu.N. Heterocyclic viroporin inhibitors in the design of antiviral compounds. Chem. Heterocyclic Comp. 2020; 56 (6): 626–635. (in Russian) doi: 10.1007/s10593-020-02712-6

107. Schwarz S., Wang K., Yu W., Sun B., Schwarz W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antivir. Res. 2011; 90: 64–69. doi: 10.1016/j.antiviral.2011.02.008

108. Дерябин О.Н.,Завелевич М.П., Старосила Д.Б. и др. Природные полифенолы как ингибиторы взаимодействия коронавирусов с клетками: обзор литературы и экспериментальные данные. Лiкарю-практику. 2020; 3 (1) (137)-V/VI. doi: 10.32471/umj.1680-3051.137.178833.

109. Roh C. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA-oligonucleotide. Int J Nanomedicine. 2012; 7: 2173–2179. doi: 10.2147/IJN.S31379.

110. Wu C., Liu Y., Yang Y. et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020; 10 (5): 766–788. doi: 10.1016/j.apsb.2020.02.008.

111. Шатунова П.О., Быков А.С., Свитич О.А., Зверев В.В. Ангиотензинпревращающий фермент 2. Подходы к патогенетической терапии. Журнал микробиологии. 2020; 97 (4): 339–345. doi: 1036233/0372-9311-2020-97-4-6.

112. Lambert D.W., Yarski M., Warner F.J. et al. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severeacute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem. 2005; 280 (34): 30113–9. doi: 10.1074/jbc.M505111200.

113. Micholas S., Jeremy C. S. Repurposing therapeutics for COVID-19: supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike protein-human ACE2 interface. ChemRxiv [Preprint]. 2020. doi: 10.26434/chemrxiv.11871402.

114. Fisher W., Currais A., Liang Z. et al. Old age-associated phenotypic screening for Alzheimer’s disease drug candidates identifies sterubin as a potent neuroprotective compound from Yerba santa. Redox Biology. 2019; 21: 101089. doi: 10.1016/j.redox.2018.101089.

115. Jena A.B., Kanungo N., Nayak V. et al. Catechin and curcumin interact with corona (2019-nCoV/SARS-CoV2) viral S protein and ACE2 of human cell membrane: insights from computational study and implication for intervention. Preprint from Research Square. 2020. 10.21203/rs.3.rs-22057/v1.

116. Kuba K., Chainy G., Dandapat J. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med. 2005; 11: 875–879. doi: 10.1038/nm1267.

117. Battle D., Wysocki J., Satchell K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clin Sci (Lond.). 2020; 134 (5): 543–545. doi: 10.1042/CS202001163.

118. Imai M., Iwatsuki-Horimoto, Hatta M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. PNAS. 2020; 117 (28): 16587–16595. doi: 10.1073/pnas.2009799117.

119. Tutunchi H., Naeini F., Ostadrahimi A., Hosseinzadeh-Attar M.J. Naringenin, a flavanone with antiviral and anti-inflammatory effects: a promising treatment strategy against COVID-19. Phytother. Res. 2020; 2: 10. 1002/ptr.6781. doi: 10.1002/ptr.6781.

120. Shukor N.A.L., Gonzales G.B., Smagghe G. Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: a study of structure activity relationships. J. of agricultural and Food Chemistry. 2013; 61 (48). doi: 10.1021/if404641v.

121. Hoffmann M., Kleine-Weber H., Pöhlmann S. A. Multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 2020. doi: 10.1016/j.molcel.2020.04.022.

122. Rabi F., Al Zoubi M. S., Kasasbeh G. A., Salameh D. M., Al-Nasser A. D. SARS-CoV-2CoV-2 and Coronavirus Disease 2019: What We known so far. Pathogens. 2020; 9 (3): 231. doi: 10.3390/pathogens9030231.

123. Fuzimoto A., Isidoro C. The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds-additional weapons in the fight against the COVID-19 pandemic? J Tradit Complement Med. 2020. 10 (4): 405–419. doi: 10.1016/j.jtcme.2020.05.003.

124. Matsuyama S., Nao N., Shirato K. et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. U.S.A. 2020; 117 (13): 7001–7003. doi: 10.1073/pnas.2002589117.

125. Schlagenhauf P., Grobusch M. P., Maier J. D., Gautret P. Repurposing antimalarials and other drugs for COVID-19. Trav. Med. Infect. Dis. 2020; 34: 101658. doi: 10.1016/j.tmaid.2020.101658.

126. Da J., Xu M., Wang Y. Kaempferol Promotes Apoptosis While Inhibiting Cell Proliferation via Androgen-Dependent Pathway and Suppressing Vasculogenic Mimicry and Invasion in Prostate Cancer. Anal Cell Pathol (Amst). 2019; 1907698. doi: 10.1155/2019/1907698.

127. Mamouni K., Zhang S., Li X. et al. A novel flavonoid composition targets androgen receptor signaling and inhibits prostate cancer growth in preclinical models. Neoplasia. 2018; 20 (8): 789–799. doi: 0.1016/j.neo.2018.06.003.

128. Bernaba B., Pandiella A. Medicinal plants as sources of active molecules against COVID-19. Front Pharmacol. 2020; 11: 1189. doi: 10.3389/fphar.2020.01189.

129. Kornberg A. DNA replication. Biochimica et Biophysica Acta. 1988; 951: 235–239.

130. Veaute X., Delmas S., Selva M., Jeusset J., Le Cam E., Matic I. UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J. 2005; 24: 180–189. doi: 10.1038/sj.emboj.7600485.

131. Jankowsky E., Gross C.H., Shuman S., Pyle A.M. Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science. 2001; 291: 121–125. doi: 10.1126/science.291.5501.121.

132. Saha A., Wittmeyer J., Cairns B.R. Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol. 2006; 7: 437–447. doi: 10.1038/nrm1945.

133. Daly J.L., Simonetti B., Klein K. et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020; 370 (6518): 861–865. doi: 10.1101/2020.06.05.134114.

134. Cantuti-Castelvetri L., Ojha R., Pedro L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020; 370 (6518): 856–860. doi: 10.1126/science.abd2985.

135. Seadawy M.G., Shamel M., Ahmed A., Zekri A.R.N. In silico docking for inhibition neuropilin-1 (SARS-CoV-2 receptor) by some natural and approved drugs. doi: 10.1126/science.abd2985.

136. Zanwar A.A., Badole S.L., Shende P.S., Hegde M.V., Bodhankar S.L. Cardiovascular effects of hesperidin: A flavanone glycoside. Polyphenols in human health and disease: Elsevier. 2014: 989–992.

137. Le Roy C., Wrana J.L. Clathrin-and-non-clathrin-mediated endocytic regulation of cell signaling. Nat Rev Moll Cell Biol. 2005; 6: 112–126.

138. Sorci-Thomas M.G., Thomas M.J. Microdomains, inflammation and atherosclerosis. Circ Res. 2016; 118 (4): 679–691. doi: 10.1161/CIRCRESAHA.115.306246.

139. Bukrinski M., Mukhamedova N., Sviridov D. Lipid rafts and pathogens: the art of deception and exploitation. Lipid Res. 2020; 61 (5): 601–610. doi: 10.1194/jlr.TR119000391.

140. Mussarat F., Chouljenko V., Dahal A. et al. The anti-HIV drug nelfinavir mesylate (viracept) is a potent inhibitor of cell fusion caused by the SARS-CoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections. J Med Virol. 2020; 92 (10): 2087–2095. doi: 10.1002/jmv.25985.

141. Niyogi K., Hildreth J.E. Characterization of new syncytium-inhibiting monoclonal antibodies implicates lipid rafts in human T-cell leukemia virus type 1 syncytium formation. J Virol. 2001; 75 (16): 7351–7361. doi: 10.1128/JVI.75.16.7351-7361.

142. Sviridov D., Miller Y.I., Ballout R.A. Targeting lipid raftsa potential therapy for COVID-19. Front. Immunol. 2020. doi: 10.3389/fimmu.2020.574508.

143. Bender W.R., Hirshberg A.M.D., Coutifaris P.B.A. et al. Universal testing for severe acute respiratory syndrome coronavirus 2 in 2 Philadelphia hospitals: carries prevalence and symptom development over 2 weeks. Am J Obstet Gynecol MFM. 2020; 2 (4): 100226. doi: 10.1016/j.ajogmf.2020.100226.

144. Glende J., SchWegmann-WesselsK., Al-Falah M. et al. Importance of cholesterol-rich membrane microdomains in the interaction of the S-protein of SARS-coronavirus with the cellular receptor angiotensin-converting enzyme 2. Virology. 2008; 381: 215–221. doi: 10.1016/j.virol.2008.08.026.

145. Cheng T.O. All teas are not created equal: the Chinese green tea and cardiovascular health. Int J Cardiol. 2006; 108 (3): 301–308. doi: 10.1016/j.ijcard.2005.05.038.

146. Messina G., Polito R., Monda V. et al. Functional role of dietary intervention to improve the outco Functional Role of Dietary Intervention to Improve the Outcome of COVID-19: A Hypothesis of Work. Int J Mol Sci. 2020; 21 (9): 3104. doi: 10.3390/ijms21093104.

147. Gorniak I., Bartoszewski R., Kroliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews. 2019; 18 (2): 241–271.

148. Tito A., Colantuono A., Pirone L. et al. A promegranate peel extract as inhibitor of SARS-CoV-2 spicke binding to human ACE2 (in vitro): a promising source of novel antiviral drugs. doi: 10.3389/fchem.2021.638187.


Для цитирования:


Беседнова Н.Н., Андрюков Б.Г., Запорожец Т.С., Кузнецова Т.А., Крыжановский С.П., Федянина Л.Н., Макаренкова И.Д., Галкина И.В., Щелканов М.Ю. Полифенолы из наземных и морских растений как ингибиторы репродукции коронавирусов. Антибиотики и Химиотерапия. 2021;66(3-4):62-81. https://doi.org/10.37489/0235-2990-2021-66-3-4-62-81

For citation:


Besednova N.N., Andryukov B.G., Zaporozhets T.S., Kuznetsova T.A., Kryzhanovskiy S.P., Fedyanina L.N., Makarenkova I.D., Galkina I.V., Shchelkanov M.Yu. Polyphenols Sourced from Terrestrial and Marine Plants as Coronavirus Reproduction Inhibitors. Antibiotics and Chemotherapy. 2021;66(3-4):62-81. (In Russ.) https://doi.org/10.37489/0235-2990-2021-66-3-4-62-81

Просмотров: 365


ISSN 0235-2990 (Print)

 collaborator - эффективное продвижение статьями