Possibilities of suppressing the cytopathogenic effect of SARS-CoV-2 coronavirus according to the results of the antiviral activity of Cytovir®-3 in vitro study
https://doi.org/10.37489/0235-2990-2021-66-5-6-4-10
Abstract
Introduction. The COVID-19 pandemic has stimulated the search for drugs with specific antiviral activity against the new pathogenic strain of the SARS-CoV-2 coronavirus. First of all, scientific search was aimed at studying drugs with already proven efficacy against influenza and ARVI. The aim of this work was to study the antiviral activity of Cytovir®-3 in vitro in relation to the cytopathogenic effect of the SARS-CoV-2 virus. Material and methods. The antiviral activity of the drug Cytovir®-3 against the SARS-CoV-2 virus was studied in experimental models in vitro on Vero CCL81 cell culture (ATCC). The maximum tolerated concentration and the 50% cytotoxic dose were determined using a quantitative microculture tetrazolium test assay to calculate the working range of the concentrations of the test drug. Results and discussion. As a result of the study, it was shown that the greatest activity of the drug was manifested when it was added to the cells 24 hours before and 1 hour and 24 hours after viral infection, the inhibition level reached 53% (>IC50) at the drug concentrations of 105, 55, and 85 µg/ml, respectively. Cytovir®-3 suppressed the viral activity of SARS-CoV-2 in the dose range from 10 µg/ml to 105 µg/ml under the indicated infection conditions. It was found that the drug did not exhibit cytotoxic effects on the Vero cell culture in the range of antiviral doses. Conclusion. The antiviral activity of Cytovir®-3 against the SARS-CoV-2 virus has been proven due to the achievement of IC50, which is below the maximum tolerated dose of 149 µg/ml.
Keywords
About the Authors
V. S. SmirnovRussian Federation
Vyacheslav S. Smirnov — D. Sc. in medicine, Professor
Saint-Petersburg
I. A. Leneva
Russian Federation
Irina A. Leneva — D. Sc. in biology
Moscow
T. A. Kudryavtseva
Russian Federation
Tatiana A. Kudryavtseva — Ph. D. in biology, research scientist
Saint-Petersburg
E. B. Fayzuloev
Russian Federation
Evgeny B. Fayzuloev — Ph. D. in biology
Moscow
V. A. Zaplutanov
Russian Federation
Vasily A. Zaplutanov — Senior Researcher at the Center of Preclinical and Clinical Research of the Department of Molecular and Radiation Biophysics
Saint-Petersburg
S. V. Petlenko
Russian Federation
Sergey V. Petlenko — D. Sc. in medicine
Saint-Petersburg
N. P. Kartashova
Russian Federation
Nadezhda P. Kartashova — Researcher at the Laboratory of Experimental Virology
Moscow
A. V. Gracheva
Russian Federation
Anastasia V. Gracheva — Junior Researcher at the Laboratory of Molecular Virology
Moscow
E. R. Korchevaya
Russian Federation
Ekaterina R. Korchevaya — Junior Researcher at the Laboratory of Molecular Virology
Moscow
References
1. Briko N.I., Kagramanyan I.N., Nikiforov V.V., Suranova T.G., Chernyavskaya O.P., Polezhaeva N.A. Pandemiya COVID-19. Mery bor'by s ee rasprostraneniem v Rossijskoj Federatsii. Epidemiologiya i Vaktsinoprofilaktika. 2020; 19(2): 4–12. doi: 10.31631/2073-3046-2020-19-2-4-12. (in Russian)
2. Barlow P., van Schalkwyk M.C., McKee M., Labonte R., Stuckler D. COVID-19 and the collapse of global trade: building an effective public health response. The Lancet. 2021; 5 (2): 102–107. doi: 10.1016/S2542-5196(20)30291-6
3. Blumenthal D., Fowler E.J., Elizabeth J., Abrams M.S., Collins S.R. Covid-19 — Implications for the Health Care System. New Engl J Med. 2020; 383 (15): 1483–1488. doi: 10.1056/NEJMsb2021088.
4. Shaukat N., Ali D.M., Razzak J. Physical and mental health impacts of COVID-19 on healthcare workers: a scoping review. International Journal of Emergency Medicine. 2020; 13 (1:40): 1–8. doi: 10.1186/s12245-020-00299-5.
5. Scavone C., Brusco S., Bertini M., Sportiello L., Rafaniello C., Zoccoli A., Berrino L., Racagni G., Rossi F., Capuano A. Current pharmacological treatments for COVID-19: What's next? Brit J Pharmacol. 2020; 177 (21): 4813–4824. doi: 10.1111/bph.15072.
6. Alexander Steve P.H., Armstrong J.F., Davenport A.P., Davies J.A. et al. A rational roadmap for SARS-Cov-2/COVID-19 pharmacotherapeutic research and development: IUPHAR Review 29. Brit J Pharmacol. 2020; 177 (21): 4942–4966. doi: 10.1111/bph.15094.
7. Liu Y., Sun W., Li J., Chen L., Wang Y., Zhang L., Yu L. Clinical features and progression of acute respiratory distress syndrome in coronavirus disease 2019. Preprint from medRxiv. 2020. doi: 10.1101/2020.02.17.20024166.
8. Sanders J.M., Monogue M.L., Jodlowski T.Z., Cutrell J.B. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. J Am Med Associat. 2020; 323 (18): 1824–1836 doi: 10.1001/jama.2020.6019.
9. Smirnov V.S., Totolyan A.A. Nekotorye vozmozhnosti immunoterapii pri koronavirusnoj infektsii. Infektsiya i immunitet. 2020; 10 (3): 446–458. doi: 10.15789/2220-7619-SPO-1470. (in Russian)
10. Smirnov V.S. Profilaktika i lechenie grippa i ostrykh respiratornykh virusnykh infektsij. Sankt-Peterburg: AJSING, 2012. (in Russian)
11. Smirnov V.S., Petlenko S.V. Gripp i ostrye respiratornye infektsii. Sankt-Peterburg: Gippokrat; 2019. (in Russian)
12. State register of approvals for clinical trials. Available at: https://grls.rosminzdrav.ru/CiPermitionReg.aspx?PermYear=0&DateInc=&NumInc=&DateBeg=&DateEnd=&Protocol=&RegNm=&Statement=&ProtoNum=&id-CIStatementCh=&Qualifier=&CiPhase=&RangeOfApp=&Torg=Цитовир&LFDos=&Producer=&Recearcher=&sponsorCountry=&MedBase-Count=&CiType=&PatientCount=&OrgDocOut=2&Status=&NotInReg=0&All=0&PageSize=8&order=date_perm&orderType=desc&pagenum=1 (accessed April 8, 2021). (in Russian)
13. Cherry J.D. The chronology of the 2002-2003 SARS mini pandemic. Paediatric Respiratory Reviews. 2004; 5 (4): 262–269. doi: 10.1016/j.prrv.2004.07.009.
14. Li K., Wohlford-Lenane C.L., Channappanavar R., Park J.E., Earnest J.T., Bair T.B. et al. Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proceedings of the National Academy of Sciences of the United States of America. 2017; 114 (15): 3119–3128. doi: 10.1073/pnas.1619109114.
15. Yin Y., Wunderink R.G. Mers, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018; 23 (2): 130–137. doi: 10.1111/resp.13196.
16. Muller J.A., Harms M., Schubert A., Mayer B. et al. Development of a high-throughput colorimetric Zika virus infection assay. Med Microbiol Immunology. 2017; 206 (2): 175–185. doi: 10.1007/s00430-017-0493-2.
17. Khamitov R.A., Loginova S.Ya., Shchukina V.N., Borisevich S.V., Maksimov V.A., Shuster A.M. Protivovirusnaya aktivnost' arbidola i ego proizvodnykh v otnoshenii vozbuditelya tyazhelogo ostrogo respiratornogo sindroma v kul'turakh kletok. Voprosy Virusologii. 2008; 53 (4): 9–13. (in Russian)
18. Loginova S.Ya., Shchukina V.N., Borisevich S.V., Khamitov R.A., Maksimov V.A., Shuster A.M. Izuchenie effektivnosti Arbidola pri eksperimental'noj forme tyazhelogo ostrogo respiratornogo sindroma. Antibiotiki i Khimioterapiya. 2019; 64 (7–8): 19–23. doi: 10.24411/0235-2990-2019-100039. (in Russian)
19. Leneva I.A., Pshenichnaya N.Jyu., Bulgakov V.A. Umifenovir i koronavirusnye infektsii: obzor rezul'tatov issledovanij i opyta primeneniya v klinicheskoj praktike. Terapevticheskij Arkhiv. 2020; 92 (11): 91–97. doi: 10.26442/00403660.2020.11.000713. (in Russian)
Review
For citations:
Smirnov V.S., Leneva I.A., Kudryavtseva T.A., Fayzuloev E.B., Zaplutanov V.A., Petlenko S.V., Kartashova N.P., Gracheva A.V., Korchevaya E.R. Possibilities of suppressing the cytopathogenic effect of SARS-CoV-2 coronavirus according to the results of the antiviral activity of Cytovir®-3 in vitro study. Antibiot Khimioter = Antibiotics and Chemotherapy. 2021;66(5-6):4-10. (In Russ.) https://doi.org/10.37489/0235-2990-2021-66-5-6-4-10