Local antiviral activity of the drug «Thymogen®», nasal dosed spray, against SARS-CoV-2 coronavirus in vitro
https://doi.org/10.37489/0235-2990-2021-66-5-6-11-16
Abstract
On account of the COVID-19 pandemic, the global pharmaceutical industry has achieved impressive results in the development and introduction of various types of vaccines causing the formation of acquired immunity against the SARS-CoV-2 coronavirus into clinical practice. However, none of them currently show the declared one hundred percent guarantee of protection. In the case of the COVID-19 disease, patients with concomitant pathologies are the most vulnerable to the occurrence of severe complications. The aerosol route of transmission of SARS-CoV-2 contributes to the emergence of outbreaks of the new coronavirus infection in crowded places and closed rooms with poor ventilation. In this regard, an urgent problem is the search for drugs with local antiviral activity, which, together with restrictive measures and mask wearing policy, can potentially reduce the likelihood of contracting coronavirus. In this experimental in vitro study on Vero CCL81 cell culture (ATCC), the local antiviral activity of the drug Thymogen® spray against the SARS-CoV-2 virus was studied in comparison with the antiseptic Miramistin® solution. As a result of the experiment, no toxic effects on Vero cells were detected in the drugs in the studied concentrations. In a series of experiments, Thymogen® spray showed local antiviral activity against SARS-CoV-2 when the virus titer was 5,2 lg TCID50. Therefore, the drug Thymogen® dosed nasal spray has high potential as a topical drug for prevention and treatment of COVID-19 disease, which requires additional confirmation in relevant clinical studies.
About the Authors
I. A. LenevaRussian Federation
Irina A. Leneva — D. Sc. in biology
Moscow
V. S. Smirnov
Russian Federation
Vyacheslav S. Smirnov — D. Sc. in medicine, Professor
Saint-Petersburg
T. A. Kudryavtseva
Russian Federation
Tatiana A. Kudryavtseva — Ph. D. in biology, research scientist
Saint-Petersburg
E. B. Fayzuloev
Russian Federation
Evgeny B. Fayzuloev — Ph. D. in biology
Moscow
A. V. Gracheva
Russian Federation
Anastasia V. Gracheva — Junior Researcher at the Laboratory of Molecular Virology
Moscow
N. P. Kartashova
Russian Federation
Nadezhda P. Kartashova — Researcher at the Laboratory of Experimental Virology
Moscow
V. A. Zaplutanov
Russian Federation
Vasily A. Zaplutanov — Senior Researcher at the Center of Preclinical and Clinical Research of the Department of Molecular and Radiation Biophysics
Saint-Petersburg
S. V. Petlenko
Russian Federation
Sergey V. Petlenko — D. Sc. in medicine
Saint-Petersburg
References
1. Lepelletier D., Grandbastien B., Romano-Bertrand S., Aho S., Chindiac C., Gehano J-F. et al. What face mask for what use in the context of the COVID-19 pandemic? The French guidelines. J Hosp Infect. 2020 Jul; 105 (3): 414–418. doi: 10.1016/j.jhin.2020.04.036.
2. Samet J. M., Prather K., Benjamin G., Lakdawala S., Lowe J-M., Reingold A. et al. Airborne Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): What We Know. Clin Infect Dis. 2021. ciab039. Published: 18 January 2021 https://doi.org/10.1093/cid/ciab039.
3. van Doremalen N., Bushmaker T., Morris D.H., Holbrook M. G., Gamble A., Willamson B.N. et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1 // N Engl J Med. 2020; 382: 1564-7. doi: 10.1056/NEJMc2004973.
4. Jarvis M.C. Aerosol Transmission of SARS-CoV-2: Physical Principles and Implications // Front Public Health. 2020; 8: 590041 doi: 10.3389/fpubh.2020.590041.
5. https://www.who.int/ru/emergencies/diseases/novel
6. Joffe A.R. COVID-19: Rethinking the Lockdown Groupthink. Front. Public Health. 2021. February 26. doi: 0.3389/fpubh.2021.625778.
7. Maclntyre C.R., Ananda-Rajan M.R. Scientific evidence supports aerosol transmission of SARS-COV-2. Antimicrob Resist Infect Control. 2020; 9: 202.
8. de Vries R. D., Schmitz K.S., Bovier F.T., Predella C., Khao J., Noak D., et al. Intranasal fusion inhibitory lipopeptide prevents direct-contact SARSCoV-2 transmission in ferrets. Science. 26 Mar 2021; 371 (6536): 1379–1382. doi: 10.1126/science.abf4896.
9. European Centre for Disease Prevention and Control. 2020. Infection prevention and control for COVID-19 in healthcare settings. https://www.ecdc.europa.eu/en/publications-data/infection-prevention-and-control-covid-19-healthcare-settings
10. Oraby T., Tyshenko M.G., Maldpnado J.C., Vatcheva K., Elsaadny S., Alali W.Q. et al. Modeling the effect of lockdown timing as a COVID-19 control measure in countries with differing social contacts. Scientific Reports. 2021; 11: 3354. doi: 10.1038/s41598-021-82873-2.
11. Drapkina O.M., Vasil'eva L.E. Spornye voprosy primeneniya ingibitorov angiotenzin-prevrashchajyushchego fermenta i antagonistov retseptorov angiotenzina u patsientov s COVID-19. Kardiovaskulyarnaya Terapiya i Profilaktika. 2020; 19 (3): 2580. doi: 10.15829/1728-8800-2020-2580. (in Russian)
12. Kuznik B.I., Khavinson V.Kh., Smirnov V.S. Osobennosti patogeneza i techeniya COVID-19 u lits pozhilogo i starcheskogo vozrasta. Uspekhi Gerontol. 2020; 33 (6): 1032–1042. doi: 10.34922/AE.2020.33.6.003. (in Russian)
13. Shatunova P.O., Bykov A.S., Svitich O.A., Zverev V.V. Angiotenzinprevrashchajyushchij ferment 2. Podkhody k patogeneticheskoj terapii COVID-19. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii. 2020; 97 (4): 339–345. doi: 10.36233/0372-9311-2020-97-4-6. (in Russian)
14. Laure R.S., Xing E., Kenney A.D., Zhang Y., Tuazon J. A., Li J. et al. Rationally Designed ACE2-Derived Peptides Inhibit SARS-CoV-2 // Bioconjugate Chem. 2021. 32., 1., 215-223
15. Saha J., Chouhan P. Lockdown and unlock for the COVID-19 pandemic and associated residential mobility in India. Intern J Infect Dis. 2021; 104: 382–389. doi: 10.1016/j.ijid.2020.11.187.
16. Tikhomirova A.R., Ruleva A.A. Kliniko-immunologicheskaya effektivnost' otechestvennogo immunotropnogo preparata u detej pri ostrykh respiratornykh infektsiyakh s bronkhoobstruktivnym sindromom. Immunologiya. 2020; 41: 3: 249–255. doi: 10.33029/0206-4952-2020-41-3-2. (in Russian)
17. MU 3.5.2431 – 08 Izuchenie i otsenka virulitsidnoj aktivnosti dezinfitsirujyushchikh sredstv. Razmeshchen: 12 noyabrya 2015 g. (in Russian)
18. Krjyukov A.I., Kunel'skaya V.Ya., Ivojlov A.Jyu., Shadrin G.B., Machulin A.I., Kiricheknko I.M. Klinicheskaya effektivnost' primeneniya preparata Miramistin u detej s obostreniem khronicheskogo gribkovogo adenoidita. Lechebnoe delo. 2016; 4: 45–50. (in Russian)
19. Ramakrishnan M.A. Determination of 50% endpoint titer using a simple formula. World J Virol. 2016; 5 (2): 85–86. doi: 10.5501/wjv.v5.i2.85.
20. Schütz D., Ruiz-Blanco Y.B., Münch J., Kirchhoff F., Sandez-Garcia E., Muller J.A. et al. Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Adv Drug Deliv Rev. 2020; 167: 47–65. doi: 10.1016/j.addr.2020.11.007.
21. Khedr S., Deussen A., Kopaliani I., Zatschler B. Effects of tryptophancontaining peptides on angiotensin-converting enzyme activity and vessel tone ex vivo and in vivo. Eur J Nutr. 2016., December 22, 13, doi: 10.1007/s00394-016-1374y.
22. Martin M., Hagemann D., Nguenn T.T., Schwarz L., Khedr S., Moskopp M.L. et al. Plasma concentrations and ACE-inhibitory effects of tryptophancontaining peptides from whey protein hydrolysate in healthy volunteers. Eur J Nutr. 2020; 59: 1135–1147. doi: 10.1007/s00394-019-01974-x.
Review
For citations:
Leneva I.A., Smirnov V.S., Kudryavtseva T.A., Fayzuloev E.B., Gracheva A.V., Kartashova N.P., Zaplutanov V.A., Petlenko S.V. Local antiviral activity of the drug «Thymogen®», nasal dosed spray, against SARS-CoV-2 coronavirus in vitro. Antibiot Khimioter = Antibiotics and Chemotherapy. 2021;66(5-6):11-16. (In Russ.) https://doi.org/10.37489/0235-2990-2021-66-5-6-11-16