Preview

Антибиотики и Химиотерапия

Расширенный поиск

Бета-лактамные антибиотики — препараты резерва для лечения лекарственно-резистентного туберкулёза

https://doi.org/10.37489/0235-2990-2021-66-5-6-78-85

Полный текст:

Аннотация

В обзорной статье представлен анализ данных литературы о необходимости расширения спектра препаратов с противотуберкулёзной активностью для лечения наиболее тяжёлых форм лекарственно-устойчивого туберкулёза за счёт применения бета-лактамов в схемах химиотерапии. Показан механизм действия бета-лактамов на микобактерии туберкулёза и представлены результаты исследований in vitro по оценке их противотуберкулёзной активности. Клинические исследования по применению карбапенемов доказывают перспективность их использования для лечения больных туберкулёзом с множественной и широкой лекарственной устойчивостью возбудителя.

Об авторах

Г. Н. Можокина
ФГБУ «Национальный медицинский исследовательский центр фтизиопульмонологии и инфекционных заболеваний» МЗ РФ
Россия

Можокина Галина Николаевна — д. м. н., ведущий научный сотрудник лаборатории иммунологии и иммунодиагностики туберкулёзной инфекции

Москва



А. Г. Самойлова
ФГБУ «Национальный медицинский исследовательский центр фтизиопульмонологии и инфекционных заболеваний» МЗ РФ
Россия

Самойлова Анастасия Геннадьевна — д. м. н., первый заместитель директора

Москва



И. А. Васильева
ФГБУ «Национальный медицинский исследовательский центр фтизиопульмонологии и инфекционных заболеваний» МЗ РФ
Россия

Васильева Ирина Анатольевна — д. м. н., профессор, директор

Москва



Список литературы

1. Global tuberculosis report 2020. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO.

2. Основные показатели по туберкулёзу (ТБ) по России в 2015-2019 гг. [Electronic resource]. URL: https://mednet.ru/images/materials/CMT/tb_rf_osnovnye_pokazateli_2019.pdf (accessed: 14.03.2021

3. Pontali E., Raviglione M.C., Migliori G. B. the writing group members of the Global TB Network Clinical Trials Committee Regimens to treat multidrug-resistant tuberculosis: past, present and future perspectives. Eur Respi Rev 2019; 28: 190035; doi: 10.1183/16000617.0035-2019.

4. Чумакова Е.С. Влияние побочных реакций противотуберкулёзных препаратов на эффективность лечения впервые выявленных больных туберкулёзом лёгких с млу возбудителя. Автореф. дисс. ..к.м.н. М.: 2017.

5. Иванова Д.А. Нежелательные реакции при лечении впервые выявленных больных туберкулёзом органов дыхания: профилактика, ранняя диагностика и купирование. Автореф. дисс…д.м.н.. М.: 2018.

6. Самойлова А.Г. Эффективность комплексного лечения больных туберкулёзом лёгких с широкой лекарственной устойчивостью возбудителя и причины ее формирования. Автореф. дисс…д.м.н. М.: 2017.

7. Murray S., Mendel C., Spigelman M.T.B. Alliance regimen development for multidrug-resistant tuberculosis.Int J Tuberc Lung Dis. 2016 Dec 1; 20 (12): 38–41.

8. WHO consolidated guidelines on drug-resistant tuberculosis treatment ISBN 978-92-4-155052-9 © World Health Organization 2019.

9. Working Group on New TB Drugs. WHO Updates Definition of XDR-TB https://www.who.int/publications/i/item/meeting-report-of-the-whoexpert-consultation-on-the-definition-of-extensively-drug-resistant-tuberculosis.

10. Gun M.A., Bozdogan B., Coban A. Y. Tuberculosis and beta-lactam antibiotics. Fut Microbial. 2020; 15 (10) 7 Aug doi: 10.2217/fmb-2019-0318.

11. Batchelder H R., Story-Roller E., Lloyd E. P., Kaushik A., Bigelow K M., Maggioncalda E C. et al. Development of a penem antibiotic against Mycobacteroides abscessus. Сom Вiol. 2020; 3: 741. doi: 10.1038/s42003-020-01475-2.

12. de Jager V.R., Vanker N. van der Merwe L., van Brakel E., Muliaditan M., Diacon A. H. Optimizing β-Lactams against Tuberculosis.Am J Respir Crit Care Med. 2020 May 1; 201 (9): 1155–1157. doi: 10.1164/rccm.201911-2149LE).

13. Maitra A., Munshi T., Healy J., Martin L.T., Vollmer W., Keep N.H., Bhakta S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles' heel for the TB-causing pathogen. FEMS Microbiol Rev. 2019 Sep 1; 43 (5): 548–575. doi: 10.1093/femsre/fuz016)

14. Kasik J.E. The Nature of Mycobacterial Penicillinase. Am Rev Respir Dis. 1965; 91: 117–119. doi: 10.1164/arrd.1965.91.1.117.

15. Finch R. Beta-lactam antibiotics and mycobacteria. J Antimicrob Chemother. 1986; 18 (1): 6–8. doi: 10.1093/jac/18.1.6.

16. Chambers H. F., Moreau D., Yajko D., Miick C., Wagner C., Hackbarth C. et al. Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis? Antimicrob Agents Chemother. 1995 Dec; 39 (12): 2620–4. doi: 10.1128/aac.39.12.2620.

17. Wang F., Cassidy C., Sacchettini J.C. Crystal structure and activity studies of the Mycobacterium tuberculosis beta-lactamase reveal its critical role in resistance to beta-lactam antibiotics. Antimicrob. Agents Chemother. 2006, 50 (8): 2762–71. doi: 10.1128/AAC.00320-06.

18. Шура К.В. Изучение роли гена whib7 и генов его регулона в природной устойчивости к антибиотикам у микобактерий. Автореф. Дисс…к.б.н. М.: 2017.

19. Lavollay M., Arthur M., Fourgeaud M., Dubost L., Marie A., Veziris N., et al. The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. J Bacteriol. 2008; 190 (12): 4360–4366. doi: 10.1128/JB.00239-08.

20. Gupta R., Lavollay M., Mainardi J.L., Arthur M., Bishai W.R., Lamichhane G. The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nat Med. 2010; 16 (4): 466–469. doi: 10.1038/nm.2120.

21. Schoonmaker M.K., Bishai W.R., Lamichhane G. Nonclassical transpeptidases of Mycobacterium tuberculosis alter cell size, morphology, the cytosolic matrix, protein localization, virulence, and resistance to betalactams. J Bacteriol. 2014; 196 (7): 1394–1402. doi: 10.1128/JB.01396-13

22. Baranowski C., Welsh M. A., Sham L.T., Eskandarian H. A, Lim H.C., Kieser K.J. et al. Maturing Mycobacterium smegmatis peptidoglycan requires non-canonical crosslinks to maintain shape. eLife 2018; 7: e37516. doi: 10.7554/eLife.37516.

23. Kumar P., Arora K., Lloyd J.R., Lee I.Y., Nair V., Fischer E. et al. Meropenem inhibits D,D-carboxypeptidase activity in Mycobacterium tuberculosis. Mol Microbiol. 2012; 86 (2): 367–381. doi: 10.1111/j.1365-2958.2012.08199.x.

24. Cordillot M., Dubée V. , Triboulet S. l Dubost L., Marie A., Hugonnet J-E. et al. In vitro cross-linking of Mycobacterium tuberculosis peptidoglycan by L,D-transpeptidases and inactivation of these enzymes by carbapenems. Antimicrob Agents Chemother. 2013 Dec; 57 (12): 5940–5. doi: 10.1128/AAC.01663-13.

25. García-Heredia A., Pohane A. A., Melzer E. S., Carr C.R, Fiolek T.J, Rundell S.R et al. Peptidoglycan precursor synthesis along the sidewall of pole-growing mycobacteria. eLife 2018; 7: e37243. doi.org/10.7554/eLife.37243.001.

26. Basta L. A. B., Ghosh A., Pan Y., Jakoncic J, Lloyd E P., Townsend C A. et al. Loss of a Functionally and Structurally Distinct L, D-Transpeptidase, LdtMt5, Compromises Cell Wall Integrity in Mycobacterium tuberculosis. J Biol Chem. 2015; 290 (42): 25670–85. doi: 10.1074/jbc.M115.660753.

27. Dubée V, Triboulet S, Mainardi JL, Ethève-Quelquejeu M, Gutmann L, Marie A. et al. Inactivation of Mycobacterium tuberculosis l,d-transpeptidase LdtMt1 by carbapenems and cephalosporins.Antimicrob Agents Chemother. 2012 Aug; 56 (8): 4189-95. doi: 10.1128/AAC.00665-12.

28. Kaushik A., Makkar N., Pandey P., Parrish N., Singh U., Lamichhane G. Carbapenems and Rifampin Exhibit Synergy against Mycobacterium tuberculosis and Mycobacterium abscessus.Antimicrob Agents Chemother. 2015 Oct; 59 (10): 6561–7. doi: 10.1128/AAC.01158-15.

29. Ramón-García S., González Del Río R., Villarejo A.S., Sweet G.D., Cunningham F., Barros D. Repurposing clinically approved cephalosporins for tuberculosis therapy. Sci Rep. 2016 Sep 28; 6: 34293. doi: 10.1038/srep34293.

30. Hugonnet J-E., Blanchard J.S. Irreversible inhibition of the Mycobacterium tuberculosis β-lactamase by clavulanate. Biochemistry. 2007; 46: 11998– 12004. doi: 10.1021/bi701506h.

31. Hugonnet J.E., Tremblay L.W., Boshoff H.I., Barry C.E. 3rd, Blanchard J.S. Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science. 2009 323: 1215–8. doi: 10.1126/science.1167498.

32. Kim H.S., Kim J., Im H.N., Yoon J.Y., An D.R., Yoon H.J. et al. Structural basis for the inhibition of Mycobacterium tuberculosis L, D-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains. Acta Crystallogr Sect D. 2013; 69: 420-31 doi: 10.1107/S0907444912048998.

33. Gonzalo X., Drobniewski F. Is there a place for β-lactams in the treatment of multidrug-resistant/extensively drug-resistant tuberculosis? Synergy between meropenem and amoxicillin/clavulanate. J Antimicrob Chemother. 2013 Feb; 68 (2): 366-9. doi: 10.1093/jac/dks395.

34. Solapure S., Dinesh N., Shandil R., Ramachandran V., Sharma S., Bhattacharjee D. et al. In vitro and in vivo efficacy of beta-lactams against replicating and slowly growing/nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2013; 57 (6): 2506–2510. doi: 10.1128/AAC.00023-13.

35. Davies Forsman L., Giske C.G., Bruchfeld J., Schön T., Juréen P., Ängeby K. Meropenem-clavulanate has high in vitro activity against multidrug-resistant Mycobacterium tuberculosis. Int J Mycobacteriol. 2015 Mar; 4 (Suppl 1): 80–1. doi: 10.1016/j.ijmyco.2014.10.018.

36. Zhang D., Wang Y., Lu J., Pang Y. In Vitro activity of β-lactams in combination with β-lactamase inhibitors against multidrug-resistant Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother. 2015 Nov 2; 60 (1): 393–9. doi: 10.1128/AAC.01035-15.

37. Cohen K.A., El-Hay T., Wyres K.L., Weissbrod O., Munsamy V., Yanover C. et al. Paradoxical hypersusceptibility of drug-resistant Mycobacterium tuberculosis to β-lactam Antibiotics. EBioMedicine. 2016 Jul; 9: 170–179. doi: 10.1016/j.ebiom.2016.05.041.

38. Payen M.C., De Wit S., Martin C., Sergysels R., Muylle I., Van Laethem Y., Clumeck N. Clinical use of the meropenem-clavulanate combination for extensively drug-resistant tuberculosis. Int J Tuberc Lung Dis. 2012 Apr; 16 (4): 558–60. doi: 10.5588/ijtld.11.0414.

39. Palmero D., González Montaner P., Cufré M., García A., Vescovo M., et al. First series of patients with XDR and pre‐XDR TB treated with regimens that included meropenen-clavulanate in Argentina. Arch. Bronconeumol. 2015; 51, e49–e52.

40. De Lorenzo S., Alffenaar J.W., Sotgiu G., Centis R., D'Ambrosio L., Tiberi S. et al. Efficacy and safety of meropenem-clavulanate added to linezolidcontaining regimens in the treatment of MDR-/XDR-TB. Eur Respir J. 2013 Jun; 41 (6): 1386–92. doi: 10.1183/09031936.00124312.

41. Tiberi S., Payen, M. C., Sotgiu, G., D'Ambrosio, L., Alarcon Guizado, V. et al. Effectiveness and safety of meropenem/clavulanate-containing regimens in the treatment of MDR- and XDR-TB. Eur Respir J. 2016 Apr; 47 (4): 1235–43. doi: 10.1183/13993003.02146-2015.

42. Sotgiu G., D'Ambrosio L., Centis R., Tiberi S., Esposito S. et al. Carbapenems To Treat Multidrug And Extensively Drug-Resistant Tuberculosis: A Systematic Review. Int J Mol Sci. 2016 Mar 12; 17 (3): 373. doi: 10.3390/ijms17030373.

43. Diacon A.H., van der Merwe L., Barnard M., von Groote-Bidlingmaier F., Lange C., García-Basteiro A.L. et al. β-Lactams against Tuberculosis — New Trick for an Old Dog? New Eng J Med. 2016; 375: 393-94. doi: 10.1056/NEJMc1513236.

44. Payen M.C., Muylle I., Vandenberg O., Mathys V., Delforge M., Van den Wijngaert S. et al. Meropenem-clavulanate for drug-resistant tuberculosis: a follow-up of relapse-free cases. Int J Tuberc Lung Dis. 2018 Jan 1; 22 (1): 34–39. doi: 10.5588/ijtld.17.0352.

45. Mishra G.P., Caminero J.A. Low-dose amoxicillin-clavulanate in drug-resistant tuberculosis.Int J Tuberc Lung Dis. 2018 Apr 1; 22 (4): 465. doi: 10.5588/ijtld.18.0055.

46. Ahmad N., Ahuja S.D., Akkerman O.W., Alffenaar J.C., Anderson L.F., Baghaei P. et al. Collaborative Group for the Meta-Analysis of Individual Patient Data in MDR-TB treatment–2017, Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet. 2018 Sep 8; 392 (10150): 821–834. doi: 10.1016/S0140-6736(18)31644-1.

47. van Rijn S.P., Zuur M.A., Anthony R., Wilffert B., van Altena R., Akkerman O.W. et al. Evaluation of Carbapenems for Treatment of Multi- and Extensively Drug-Resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2019 Jan 29; 63 (2): e01489-18. doi: 10.1128/AAC.01489-18.

48. Chavan V.V., Dalal A., Nagaraja S., Thekkur P., Mansoor H., Meneguim A. et al. Ambulatory management of pre- and extensively drug resistant tuberculosis patients with imipenem delivered through port-a-cath: A mixed methods study on treatment outcomes and challenges. PLoS ONE. 2020; 15 (6): e0234651. doi: 10.1371/journal.pone.0234651.

49. Norrby S.R. Carbapenems in serious infections: a risk-benefit assessment. Drug Saf. 2000 Mar; 22 (3): 191–4. doi: 10.2165/00002018-200022030-00003.

50. Hornik C.P., Herring A.H., Benjamin D.K. Jr., Capparelli E.V., Kearns G.L., van den Anker J. et al. Best Pharmaceuticals for Children Act-Pediatric Trials Network. Adverse events associated with meropenem versus imipenem/cilastatin therapy in a large retrospective cohort of hospitalized infants. Pediatr Infect Dis J. 2013 Jul; 32 (7): 748-53. doi: 10.1097/INF.0b013e31828be70b.

51. Wu Y., Chen K., Shi Z., Wang Q. A retrospective study on the incidence of seizures among neurosurgical patients who treated with imipenem/cilastatin or meropenem. Curr Pharm Biotechnol. 2014; 15 (8): 685-90. doi: 10.2174/1389201015666140717090143.

52. Cannon J.P., Lee T.A., Clark N.M., Setlak P., Grim S.A. The risk of seizures among the carbapenems: a meta-analysis. J Antimicrob Chemother. 2014 Aug; 69 (8): 2043–55. doi: 10.1093/jac/dku111.

53. Lee Y., Bradley N. Overview and Insights into Carbapenem Allergy. Pharmacy (Basel). 2019 Aug 8; 7 (3): 110. doi: 10.3390/pharmacy7030110.

54. Sharifzadeh S., Mohammadpour A.H., Tavanaee A., Elyasi S. Antibacterial antibiotic-induced drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome: a literature review. Eur J Clin Pharmacol. 2021 Mar; 77 (3): 275–289. doi: 10.1007/s00228-020-03005-9.

55. Story-Roller E., Lamichhane G. Have we realized the full potential of βlactams for treating drug-resistant TB? Story-Roller E, Lamichhane G.IUBMB Life. 2018 Sep; 70 (9): 881-888. doi: 10.1002/iub.1875.

56. Horita Y., Maeda S., Kazumi Y., Doi N. In vitro susceptibility of Mycobacterium tuberculosis isolates to an oral carbapenem alone or in combination with β-lactamase inhibitors. Antimicrob Agents Chemother. 2014; 58 (11): 7010–7014. doi:10.1128/AAC.03539-14.

57. Perry C.M., Ibbotson T. Biapenem. Drugs. 2002; 62 (15): 2221–34; discussion 2235. doi: 10.2165/00003495-200262150-00005.

58. Kaushik A., Ammerman N.C., Tasneen R., Story-Roller E., Dooley K.E., Dorman S.E., Nuermberger E.L., Lamichhane G. In vitro and in vivo activity of biapenem against drug-susceptible and rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother. 2017 Aug 1; 72 (8): 2320–2325. doi: 10.1093/jac/dkx152.

59. Srivastava S., Deshpande D., Pasipanodya J., Nuermberger E., Swaminathan S., Gumbo T. Optimal clinical doses of faropenem, linezolid, and moxifloxacin in children with disseminated tuberculosis: goldilocks. Clin Infect Dis. 2016 Nov 1; 63 (Suppl 3): S102–S109. doi: 10.1093/cid/ciw483.

60. Dhar N., Dubée V., Ballell L., Cuinet G., Hugonnet J.E., Signorino-Gelo F. et al. Rapid cytolysis of Mycobacterium tuberculosis by faropenem, an orally bioavailable β-lactam antibiotic. Antimicrob Agents Chemother. 2015 Feb; 59 (2): 1308-19. doi: 10.1128/AAC.03461-14.

61. Kumar P., Kaushik A., Lloyd E.P., Li S.G., Mattoo R., Ammerman N.C. et al. Non-classical transpeptidases yield insight into new antibacterials. Nat Chem Biol. 2017 Jan; 13 (1): 54–61. doi: 10.1038/nchembio.2237.

62. Steiner E. M., Schneider G., Schnell R. Binding and processing of β-lactam antibiotics by the transpeptidase LdtMt2 from Mycobacterium tuberculosis. FEBS J. 2017; 284: 725–741. doi: 10.1111/febs.14010.

63. Deshpande D., Srivastava S., Nuermberger E., Pasipanodya J.G., Swaminathan S., Gumbo T. A Faropenem, Linezolid, and Moxifloxacin Regimen for Both Drug-Susceptible and Multidrug-Resistant Tuberculosis in Children: FLAME Path on the Milky Way. Clin Infect Dis. 2016 Nov 1; 63 (Suppl 3): S95–S101. doi: 10.1093/cid/ciw474.


Рецензия

Для цитирования:


Можокина Г.Н., Самойлова А.Г., Васильева И.А. Бета-лактамные антибиотики — препараты резерва для лечения лекарственно-резистентного туберкулёза. Антибиотики и Химиотерапия. 2021;66(5-6):78-85. https://doi.org/10.37489/0235-2990-2021-66-5-6-78-85

For citation:


Mozhokina G.N., Samoilova A.G., Vasilyeva I.A. Beta-lactam antibiotics as reserve medications for the treatment of drug-resistant tuberculosis. Antibiotics and Chemotherapy. 2021;66(5-6):78-85. (In Russ.) https://doi.org/10.37489/0235-2990-2021-66-5-6-78-85

Просмотров: 336


ISSN 0235-2990 (Print)