Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Beta-lactam antibiotics as reserve medications for the treatment of drug-resistant tuberculosis

https://doi.org/10.37489/0235-2990-2021-66-5-6-78-85

Abstract

The review article presents an analysis of literature data on the necessity to expand the range of medications possessing anti-tuberculosis activity for the treatment of the most severe forms of drug-resistant tuberculosis through the use of beta-lactam antibiotics in chemotherapy regimens. The mechanism of action of beta- lactam antibiotics on mycobacterium tuberculosis is shown, and the results of in vitro studies to assess their anti-tuberculosis activity are presented. Clinical studies on the use of carbapenems prove the feasibility of their use for the treatment of patients with tuberculosis with multiple and extensive drug resistance of the pathogen.

About the Authors

G. N. Mozhokina
National Medical Research Center of Phthisiopulmonology and Infectious Diseases
Russian Federation

Galina N. Mozhokina — D. Sc. in medicine

Moscow



A. G. Samoilova
National Medical Research Center of Phthisiopulmonology and Infectious Diseases
Russian Federation

Anastasia G. Samoilova — D. Sc. in medicine

Moscow



I. A. Vasilyeva
National Medical Research Center of Phthisiopulmonology and Infectious Diseases
Russian Federation

Irina A. Vasilyeva — D. Sc. in medicine

Moscow



References

1. Global tuberculosis report 2020. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO.

2. Osnovnye pokazateli po tuberkulezu (TB) po Rossii v 2015-2019 gg. URL: https://mednet.ru/images/materials/CMT/tb_rf_osnovnye_pokazateli_2019.pdf (accessed: 14.03.2021) (in Russian)]

3. Pontali E., Raviglione M.C., Migliori G. B. the writing group members of the Global TB Network Clinical Trials Committee Regimens to treat multidrug-resistant tuberculosis: past, present and future perspectives. Eur Respi Rev 2019; 28: 190035; doi: 10.1183/16000617.0035-2019.

4. Chumakova E.S. Vliyanie pobochnykh reaktsii protivotuberkuleznykh preparatov na effektivnost' lecheniya vpervye vyyavlennykh bol'nykh tuberkulezom legkikh s mlu vozbuditelya. Avtoref. diss. ..k.m.n. Moscow, 2017 (in Russian)

5. Ivanova D.A. Nezhelatel'nye reaktsii pri lechenii vpervye vyyavlennykh bol'nykh tuberkulezom organov dykhaniya: profilaktika, rannyaya diagnostika i kupirovanie. Avtoref. diss…d.m.n.. Moscow, 2018. (in Russian)

6. Samoilova A.G. Effektivnost' kompleksnogo lecheniya bol'nykh tuberkulezom legkikh s shirokoi lekarstvennoi ustoichivost'yu vozbuditelya i prichiny ee formirovaniya. Avtoref. diss…d.m.n. Moscow, 2017 (in Russian)

7. Murray S., Mendel C., Spigelman M.T.B. Alliance regimen development for multidrug-resistant tuberculosis.Int J Tuberc Lung Dis. 2016 Dec 1; 20 (12): 38–41.

8. WHO consolidated guidelines on drug-resistant tuberculosis treatment ISBN 978-92-4-155052-9 © World Health Organization 2019.

9. Working Group on New TB Drugs. WHO Updates Definition of XDR-TB https://www.who.int/publications/i/item/meeting-report-of-the-whoexpert-consultation-on-the-definition-of-extensively-drug-resistant-tuberculosis.

10. Gun M.A., Bozdogan B., Coban A. Y. Tuberculosis and beta-lactam antibiotics. Fut Microbial. 2020; 15 (10) 7 Aug doi: 10.2217/fmb-2019-0318.

11. Batchelder H R., Story-Roller E., Lloyd E. P., Kaushik A., Bigelow K M., Maggioncalda E C. et al. Development of a penem antibiotic against Mycobacteroides abscessus. Сom Вiol. 2020; 3: 741. doi: 10.1038/s42003-020-01475-2.

12. de Jager V.R., Vanker N. van der Merwe L., van Brakel E., Muliaditan M., Diacon A. H. Optimizing β-Lactams against Tuberculosis.Am J Respir Crit Care Med. 2020 May 1; 201 (9): 1155–1157. doi: 10.1164/rccm.201911-2149LE).

13. Maitra A., Munshi T., Healy J., Martin L.T., Vollmer W., Keep N.H., Bhakta S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles' heel for the TB-causing pathogen. FEMS Microbiol Rev. 2019 Sep 1; 43 (5): 548–575. doi: 10.1093/femsre/fuz016)

14. Kasik J.E. The Nature of Mycobacterial Penicillinase. Am Rev Respir Dis. 1965; 91: 117–119. doi: 10.1164/arrd.1965.91.1.117.

15. Finch R. Beta-lactam antibiotics and mycobacteria. J Antimicrob Chemother. 1986; 18 (1): 6–8. doi: 10.1093/jac/18.1.6.

16. Chambers H. F., Moreau D., Yajko D., Miick C., Wagner C., Hackbarth C. et al. Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis? Antimicrob Agents Chemother. 1995 Dec; 39 (12): 2620–4. doi: 10.1128/aac.39.12.2620.

17. Wang F., Cassidy C., Sacchettini J.C. Crystal structure and activity studies of the Mycobacterium tuberculosis beta-lactamase reveal its critical role in resistance to beta-lactam antibiotics. Antimicrob. Agents Chemother. 2006, 50 (8): 2762–71. doi: 10.1128/AAC.00320-06.

18. Shura K.V. Izuchenie roli gena whib7 i genov ego regulona v prirodnoi ustoichivosti k antibiotikam u mikobakterii. Avtoref. Diss…k.b.n. Moscow, 2017 (in Russian)

19. Lavollay M., Arthur M., Fourgeaud M., Dubost L., Marie A., Veziris N., et al. The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. J Bacteriol. 2008; 190 (12): 4360–4366. doi: 10.1128/JB.00239-08.

20. Gupta R., Lavollay M., Mainardi J.L., Arthur M., Bishai W.R., Lamichhane G. The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nat Med. 2010; 16 (4): 466–469. doi: 10.1038/nm.2120.

21. Schoonmaker M.K., Bishai W.R., Lamichhane G. Nonclassical transpeptidases of Mycobacterium tuberculosis alter cell size, morphology, the cytosolic matrix, protein localization, virulence, and resistance to betalactams. J Bacteriol. 2014; 196 (7): 1394–1402. doi: 10.1128/JB.01396-13

22. Baranowski C., Welsh M. A., Sham L.T., Eskandarian H. A, Lim H.C., Kieser K.J. et al. Maturing Mycobacterium smegmatis peptidoglycan requires non-canonical crosslinks to maintain shape. eLife 2018; 7: e37516. doi: 10.7554/eLife.37516.

23. Kumar P., Arora K., Lloyd J.R., Lee I.Y., Nair V., Fischer E. et al. Meropenem inhibits D,D-carboxypeptidase activity in Mycobacterium tuberculosis. Mol Microbiol. 2012; 86 (2): 367–381. doi: 10.1111/j.1365-2958.2012.08199.x.

24. Cordillot M., Dubée V. , Triboulet S. l Dubost L., Marie A., Hugonnet J-E. et al. In vitro cross-linking of Mycobacterium tuberculosis peptidoglycan by L,D-transpeptidases and inactivation of these enzymes by carbapenems. Antimicrob Agents Chemother. 2013 Dec; 57 (12): 5940–5. doi: 10.1128/AAC.01663-13.

25. García-Heredia A., Pohane A. A., Melzer E. S., Carr C.R, Fiolek T.J, Rundell S.R et al. Peptidoglycan precursor synthesis along the sidewall of pole-growing mycobacteria. eLife 2018; 7: e37243. doi.org/10.7554/eLife.37243.001.

26. Basta L. A. B., Ghosh A., Pan Y., Jakoncic J, Lloyd E P., Townsend C A. et al. Loss of a Functionally and Structurally Distinct L, D-Transpeptidase, LdtMt5, Compromises Cell Wall Integrity in Mycobacterium tuberculosis. J Biol Chem. 2015; 290 (42): 25670–85. doi: 10.1074/jbc.M115.660753.

27. Dubée V, Triboulet S, Mainardi JL, Ethève-Quelquejeu M, Gutmann L, Marie A. et al. Inactivation of Mycobacterium tuberculosis l,d-transpeptidase LdtMt1 by carbapenems and cephalosporins.Antimicrob Agents Chemother. 2012 Aug; 56 (8): 4189-95. doi: 10.1128/AAC.00665-12.

28. Kaushik A., Makkar N., Pandey P., Parrish N., Singh U., Lamichhane G. Carbapenems and Rifampin Exhibit Synergy against Mycobacterium tuberculosis and Mycobacterium abscessus.Antimicrob Agents Chemother. 2015 Oct; 59 (10): 6561–7. doi: 10.1128/AAC.01158-15.

29. Ramón-García S., González Del Río R., Villarejo A.S., Sweet G.D., Cunningham F., Barros D. Repurposing clinically approved cephalosporins for tuberculosis therapy. Sci Rep. 2016 Sep 28; 6: 34293. doi: 10.1038/srep34293.

30. Hugonnet J-E., Blanchard J.S. Irreversible inhibition of the Mycobacterium tuberculosis β-lactamase by clavulanate. Biochemistry. 2007; 46: 11998– 12004. doi: 10.1021/bi701506h.

31. Hugonnet J.E., Tremblay L.W., Boshoff H.I., Barry C.E. 3rd, Blanchard J.S. Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science. 2009 323: 1215–8. doi: 10.1126/science.1167498.

32. Kim H.S., Kim J., Im H.N., Yoon J.Y., An D.R., Yoon H.J. et al. Structural basis for the inhibition of Mycobacterium tuberculosis L, D-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains. Acta Crystallogr Sect D. 2013; 69: 420-31 doi: 10.1107/S0907444912048998.

33. Gonzalo X., Drobniewski F. Is there a place for β-lactams in the treatment of multidrug-resistant/extensively drug-resistant tuberculosis? Synergy between meropenem and amoxicillin/clavulanate. J Antimicrob Chemother. 2013 Feb; 68 (2): 366-9. doi: 10.1093/jac/dks395.

34. Solapure S., Dinesh N., Shandil R., Ramachandran V., Sharma S., Bhattacharjee D. et al. In vitro and in vivo efficacy of beta-lactams against replicating and slowly growing/nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2013; 57 (6): 2506–2510. doi: 10.1128/AAC.00023-13.

35. Davies Forsman L., Giske C.G., Bruchfeld J., Schön T., Juréen P., Ängeby K. Meropenem-clavulanate has high in vitro activity against multidrug-resistant Mycobacterium tuberculosis. Int J Mycobacteriol. 2015 Mar; 4 (Suppl 1): 80–1. doi: 10.1016/j.ijmyco.2014.10.018.

36. Zhang D., Wang Y., Lu J., Pang Y. In Vitro activity of β-lactams in combination with β-lactamase inhibitors against multidrug-resistant Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother. 2015 Nov 2; 60 (1): 393–9. doi: 10.1128/AAC.01035-15.

37. Cohen K.A., El-Hay T., Wyres K.L., Weissbrod O., Munsamy V., Yanover C. et al. Paradoxical hypersusceptibility of drug-resistant Mycobacterium tuberculosis to β-lactam Antibiotics. EBioMedicine. 2016 Jul; 9: 170–179. doi: 10.1016/j.ebiom.2016.05.041.

38. Payen M.C., De Wit S., Martin C., Sergysels R., Muylle I., Van Laethem Y., Clumeck N. Clinical use of the meropenem-clavulanate combination for extensively drug-resistant tuberculosis. Int J Tuberc Lung Dis. 2012 Apr; 16 (4): 558–60. doi: 10.5588/ijtld.11.0414.

39. Palmero D., González Montaner P., Cufré M., García A., Vescovo M., et al. First series of patients with XDR and pre‐XDR TB treated with regimens that included meropenen-clavulanate in Argentina. Arch. Bronconeumol. 2015; 51, e49–e52.

40. De Lorenzo S., Alffenaar J.W., Sotgiu G., Centis R., D'Ambrosio L., Tiberi S. et al. Efficacy and safety of meropenem-clavulanate added to linezolidcontaining regimens in the treatment of MDR-/XDR-TB. Eur Respir J. 2013 Jun; 41 (6): 1386–92. doi: 10.1183/09031936.00124312.

41. Tiberi S., Payen, M. C., Sotgiu, G., D'Ambrosio, L., Alarcon Guizado, V. et al. Effectiveness and safety of meropenem/clavulanate-containing regimens in the treatment of MDR- and XDR-TB. Eur Respir J. 2016 Apr; 47 (4): 1235–43. doi: 10.1183/13993003.02146-2015.

42. Sotgiu G., D'Ambrosio L., Centis R., Tiberi S., Esposito S. et al. Carbapenems To Treat Multidrug And Extensively Drug-Resistant Tuberculosis: A Systematic Review. Int J Mol Sci. 2016 Mar 12; 17 (3): 373. doi: 10.3390/ijms17030373.

43. Diacon A.H., van der Merwe L., Barnard M., von Groote-Bidlingmaier F., Lange C., García-Basteiro A.L. et al. β-Lactams against Tuberculosis — New Trick for an Old Dog? New Eng J Med. 2016; 375: 393-94. doi: 10.1056/NEJMc1513236.

44. Payen M.C., Muylle I., Vandenberg O., Mathys V., Delforge M., Van den Wijngaert S. et al. Meropenem-clavulanate for drug-resistant tuberculosis: a follow-up of relapse-free cases. Int J Tuberc Lung Dis. 2018 Jan 1; 22 (1): 34–39. doi: 10.5588/ijtld.17.0352.

45. Mishra G.P., Caminero J.A. Low-dose amoxicillin-clavulanate in drug-resistant tuberculosis.Int J Tuberc Lung Dis. 2018 Apr 1; 22 (4): 465. doi: 10.5588/ijtld.18.0055.

46. Ahmad N., Ahuja S.D., Akkerman O.W., Alffenaar J.C., Anderson L.F., Baghaei P. et al. Collaborative Group for the Meta-Analysis of Individual Patient Data in MDR-TB treatment–2017, Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet. 2018 Sep 8; 392 (10150): 821–834. doi: 10.1016/S0140-6736(18)31644-1.

47. van Rijn S.P., Zuur M.A., Anthony R., Wilffert B., van Altena R., Akkerman O.W. et al. Evaluation of Carbapenems for Treatment of Multi- and Extensively Drug-Resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2019 Jan 29; 63 (2): e01489-18. doi: 10.1128/AAC.01489-18.

48. Chavan V.V., Dalal A., Nagaraja S., Thekkur P., Mansoor H., Meneguim A. et al. Ambulatory management of pre- and extensively drug resistant tuberculosis patients with imipenem delivered through port-a-cath: A mixed methods study on treatment outcomes and challenges. PLoS ONE. 2020; 15 (6): e0234651. doi: 10.1371/journal.pone.0234651.

49. Norrby S.R. Carbapenems in serious infections: a risk-benefit assessment. Drug Saf. 2000 Mar; 22 (3): 191–4. doi: 10.2165/00002018-200022030-00003.

50. Hornik C.P., Herring A.H., Benjamin D.K. Jr., Capparelli E.V., Kearns G.L., van den Anker J. et al. Best Pharmaceuticals for Children Act-Pediatric Trials Network. Adverse events associated with meropenem versus imipenem/cilastatin therapy in a large retrospective cohort of hospitalized infants. Pediatr Infect Dis J. 2013 Jul; 32 (7): 748-53. doi: 10.1097/INF.0b013e31828be70b.

51. Wu Y., Chen K., Shi Z., Wang Q. A retrospective study on the incidence of seizures among neurosurgical patients who treated with imipenem/cilastatin or meropenem. Curr Pharm Biotechnol. 2014; 15 (8): 685-90. doi: 10.2174/1389201015666140717090143.

52. Cannon J.P., Lee T.A., Clark N.M., Setlak P., Grim S.A. The risk of seizures among the carbapenems: a meta-analysis. J Antimicrob Chemother. 2014 Aug; 69 (8): 2043–55. doi: 10.1093/jac/dku111.

53. Lee Y., Bradley N. Overview and Insights into Carbapenem Allergy. Pharmacy (Basel). 2019 Aug 8; 7 (3): 110. doi: 10.3390/pharmacy7030110.

54. Sharifzadeh S., Mohammadpour A.H., Tavanaee A., Elyasi S. Antibacterial antibiotic-induced drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome: a literature review. Eur J Clin Pharmacol. 2021 Mar; 77 (3): 275–289. doi: 10.1007/s00228-020-03005-9.

55. Story-Roller E., Lamichhane G. Have we realized the full potential of βlactams for treating drug-resistant TB? Story-Roller E, Lamichhane G.IUBMB Life. 2018 Sep; 70 (9): 881-888. doi: 10.1002/iub.1875.

56. Horita Y., Maeda S., Kazumi Y., Doi N. In vitro susceptibility of Mycobacterium tuberculosis isolates to an oral carbapenem alone or in combination with β-lactamase inhibitors. Antimicrob Agents Chemother. 2014; 58 (11): 7010–7014. doi:10.1128/AAC.03539-14.

57. Perry C.M., Ibbotson T. Biapenem. Drugs. 2002; 62 (15): 2221–34; discussion 2235. doi: 10.2165/00003495-200262150-00005.

58. Kaushik A., Ammerman N.C., Tasneen R., Story-Roller E., Dooley K.E., Dorman S.E., Nuermberger E.L., Lamichhane G. In vitro and in vivo activity of biapenem against drug-susceptible and rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother. 2017 Aug 1; 72 (8): 2320–2325. doi: 10.1093/jac/dkx152.

59. Srivastava S., Deshpande D., Pasipanodya J., Nuermberger E., Swaminathan S., Gumbo T. Optimal clinical doses of faropenem, linezolid, and moxifloxacin in children with disseminated tuberculosis: goldilocks. Clin Infect Dis. 2016 Nov 1; 63 (Suppl 3): S102–S109. doi: 10.1093/cid/ciw483.

60. Dhar N., Dubée V., Ballell L., Cuinet G., Hugonnet J.E., Signorino-Gelo F. et al. Rapid cytolysis of Mycobacterium tuberculosis by faropenem, an orally bioavailable β-lactam antibiotic. Antimicrob Agents Chemother. 2015 Feb; 59 (2): 1308-19. doi: 10.1128/AAC.03461-14.

61. Kumar P., Kaushik A., Lloyd E.P., Li S.G., Mattoo R., Ammerman N.C. et al. Non-classical transpeptidases yield insight into new antibacterials. Nat Chem Biol. 2017 Jan; 13 (1): 54–61. doi: 10.1038/nchembio.2237.

62. Steiner E. M., Schneider G., Schnell R. Binding and processing of β-lactam antibiotics by the transpeptidase LdtMt2 from Mycobacterium tuberculosis. FEBS J. 2017; 284: 725–741. doi: 10.1111/febs.14010.

63. Deshpande D., Srivastava S., Nuermberger E., Pasipanodya J.G., Swaminathan S., Gumbo T. A Faropenem, Linezolid, and Moxifloxacin Regimen for Both Drug-Susceptible and Multidrug-Resistant Tuberculosis in Children: FLAME Path on the Milky Way. Clin Infect Dis. 2016 Nov 1; 63 (Suppl 3): S95–S101. doi: 10.1093/cid/ciw474.


Review

For citations:


Mozhokina G.N., Samoilova A.G., Vasilyeva I.A. Beta-lactam antibiotics as reserve medications for the treatment of drug-resistant tuberculosis. Antibiot Khimioter = Antibiotics and Chemotherapy. 2021;66(5-6):78-85. (In Russ.) https://doi.org/10.37489/0235-2990-2021-66-5-6-78-85

Views: 1016


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)