Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

The Efficacy of a Peptide Product from the Pituitary Gland of Rangifer tarandus as an Antioxidant Agent Under the Combined Effects of Light Desynchronosis and Depriming Toxicant

https://doi.org/10.37489/0235-2990-2021-66-7-8-20-29

Abstract

The possibility of using methods for determining the oxidative status of an organism (enzymatic and non-enzymatic links of the cellular antioxidant system) to assess the antioxidant properties of peptides of the pituitary gland of the reindeer (Rangifer tarandus) were investigated in an experimental study conducted with a combined effect of factors of different nature on rats: a physical factor — prolonged light desynchronosis (different light modes) and a chemical factor - acute severe poisoning with depriving toxicant (sodium thiopental, LD50). The pharmacological correction of the oxidative status of cells in the animals of the experimental subgroups was carried out with the peptide product of the pituitary gland, intranasally injecting the surviving rats with the bioproduct at a dose of 100 µg/kg, once in the first half of the objective day for 14 days after poisoning with sodium thiopental. The surviving animals of the control groups were similarly injected with saline. The effectiveness of the correction of the disruptions of the cellular oxidative status with the peptide product of the pituitary gland was tested 30 days after the onset of the combined effect of stress factors on rats. It was found that the use of this bioactive peptide product in experimental animals exposed to different light modes and a chemical factor contributed to a decrease in the initially increased indicators of lipid peroxidation in rat erythrocytes and an increase in the initially reduced indicators of the enzymatic link of antioxidant protection. The activity of superoxide dismutase, glutathione peroxidase, glutathione transferase, as well as glucose-6-phosphate dehydrogenase increased after pharmacological correction. The concentration of reduced glutathione also increased in erythrocytes. The maximum changes were observed in the experimental subgroup of rats exposed to the combined effects of constant illumination and depriming toxicant. It was also found that the revealed positive changes in the indicators of the enzymatic link of antioxidant protection in animals of the experimental subgroups are associated with the maintenance of a sufficient concentration of reduced glutathione in red blood cells, which contributed to the maintenance of the cellular redox balance, when the conditions of the external lighting regime are violated.

About the Authors

E. G. Batotsyrenova
Scientific and Clinical Center of Toxicology named after academician S. N. Golikov of the Federal Medical and Biological Agency; St. Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation

Batotsyrenova Ekaterina Gennadievna — Ph. D. in biology

St. Petersburg



V. A. Kashuro
Scientific and Clinical Center of Toxicology named after academician S. N. Golikov of the Federal Medical and Biological Agency; St. Petersburg State University
Russian Federation

Kashuro Vadim Anatolyevich — D. Sc. in medicine

St. Petersburg



A. V. Sharabanov
Scientific and Clinical Center of Toxicology named after academician S. N. Golikov of the Federal Medical and Biological Agency
Russian Federation

Sharabanov Andrey Vyacheslavovich — Researcher

St. Petersburg



V. K. Kozlov
Scientific and Clinical Center of Toxicology named after academician S. N. Golikov of the Federal Medical and Biological Agency; St. Petersburg State University
Russian Federation

Kozlov Viktor Konstantinovich — D. Sc. in medicine, Professor

1 Bekhtereva st., St. Petersburg



A. L. Kovalenko
Scientific and Clinical Center of Toxicology named after academician S. N. Golikov of the Federal Medical and Biological Agency
Russian Federation

Kovalenko Alexey Leonidovich — D. Sc. in biology, Ph. D. in chemistry

St. Petersburg



References

1. Kashuro V.A., Glushkov S.I., Novikova T.M., Aksenov V.V. Cardioprotective effect of cytoflavine on a model of doxorubicin-induced cardiomyopathy Eksp Klin Farmakol. 2010; 73 (3): 15–17. PMID: 20408423.

2. Giordano C., Marchio M., Biagini G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets Front Neurol. 2014; 5: 63: 1–14. doi:10.3389/fneur.2014.00063.

3. Fosgerau K., Hoffmann T, Peptide therapeutics: current status and future directions Drug Discov Today. 2015; 20 (1): 122–128. doi: 10.1016/j.drudis.2014.10.003.

4. Batotsyrenova E.G., Kostrova T.A., Zhilyaeva E.Kh. i dr. Okislitel'nyj stress v psikhiatrii i nevrologii, Sankt-Peterburg 2016; 19–20. (in Russian)

5. Batotsyrenova E.G., Kashuro V.A.,. Ivanov M.B. Markery energeticheskogo obmena v usloviyakh narusheniya tsirkadiannykh ritmov. Voprosy Biol Med Farm Khimii. 2017; 20 (11): 39–42. (in Russian)

6. Kostrova T.A., Zhilyaeva E.Kh., Lisitskij D.S. i dr. Vzaimodejstvie nervnoj i immunnoj sistem v norme i pri patologii, St-Peterburgb: 2017; 135. (in Russian)

7. Shvetsov A.V.,. Djyuzhikova N.A, Savenko Jyu.N., Batotsyrenova E.G., Kashuro V.A. Vliyanie eksperimental'noj komy na ekspressijyu belka BCL-2 I KASPAZ-3,9 v mozge krys. Bjyulleten' Eksperimental'noj Biologii i Meditsiny. 2015; 160 (8): 178–181. (in Russian)

8. Klimina K.M., Batotsyrenova E.G., Yunes R.A., Gilyaeva E.H., Poluektova E.U., Kostrova T.A., Kudryavtseva A.V., Odorskaya M.V., KashuroV.A., Kasianov A.S., Ivanov M.B., Danilenko V.N. The effects of desynchronosis on the gut microbiota composition and physiological parameters of rats. BMC Microbiology. 2019;19: 160. doi: 10.1186/s12866-019-1535-2.

9. Nosov A.V., Basharin V.A., Bonitenko E.Jyu, Belyakova N.A. Korrektsiya narushenij energeticheskogo obmena pri ostrykh otravleniyakh deprimirujyushchimi yadami. Medline.ru 2014; 15: 195–208. (in Russian)

10. Batotsyrenova E.G., Zolotoverkhaja E.A.,. Kashuro V.A, Sharabanov A.V. Changes of biochemical parameters in blood serum rats under chronic light desynchronosis. Biomeditsinskaya Khimiya. 2020; 66 (6): 450–455. doi: 10.18097/PBMC20206606450.

11. Stal'naya I. D. Sovremennye metody v biokhimii: kniga. Ed. V. N. Orekhovicha, Moscow: Meditsina. 1977. (in Russian)

12. Mihara M., Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test Anal Biochem.1978; 86 (1): 271–278. doi: 10.1016/0003-2697(78)90342-1.

13. Ellman G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959; 2 (1): 70–77. doi: 10.1016/0003-9861(59)90090-6.

14. Habig W. H., Jakoby W. B. Assays for differentiation of glutathione Stransferases. Methods Enzymol. 1981; 77: 398–405. doi: 10.1016/s0076-6879(81)77053-8.

15. Ray S., Reddy A.B. Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: Dispelling the darkness Bioessays. 2016; 38: 394–405. doi: 10.1002/bies.201500056.

16. Kostrova T.A., Batotsyrenova E.G., Kashuro V.A., Dolgo-Saburov V.B., Stepanov S.V., Zolotoverkhaya E.A., Shchepetkova K.M. Otsenka biokhimicheskikh pokazatelej v tkanyakh golovnogo mozga u krys v otdalennyj period posle tyazhelogo otravleniya tiopentalom natriya. Meditsina Ekstremal'nykh Situatsij. 2019; 21 (3): 429–435. (in Russian)

17. Brancaccio M., Enoki R., Mazuski C. N., Jones J., Evans J.A., Azzi A. Network-mediated encoding of circadian time: the suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back. J Neurosci. 2014; 34 (46): 15192–15199. doi: 10.1523/JNEUROSCI.3233-14.2014.

18. Kashuro V.A. Patogeneticheskoe i diagnosticheskoe znachenie sistemy glutationa v otsenke tsitotoksicheskogo dejstviya protivoopukholevykh preparatov. Avtopef. dic. d-pa med. nauk, SPb.: 2009; 14. (in Russian)

19. Moskalev A.A. Starenie i geny. SPb.: Nauka. 2008; 358. (in Russian)


Review

For citations:


Batotsyrenova E.G., Kashuro V.A., Sharabanov A.V., Kozlov V.K., Kovalenko A.L. The Efficacy of a Peptide Product from the Pituitary Gland of Rangifer tarandus as an Antioxidant Agent Under the Combined Effects of Light Desynchronosis and Depriming Toxicant. Antibiot Khimioter = Antibiotics and Chemotherapy. 2021;66(7-8):20-29. (In Russ.) https://doi.org/10.37489/0235-2990-2021-66-7-8-20-29

Views: 661


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)