Preview

Антибиотики и Химиотерапия

Расширенный поиск

Патогенетическая роль и возможности коррекции нарушения кишечной микробиоты при инфекции мочевых путей

https://doi.org/10.37489/0235-2990-2021-66-7-8-100-108

Полный текст:

Аннотация

В статье представлены современные данные о роли кишечной микробиоты в развитии инфекций мочевых путей. Показаны основные патогенетические механизмы, способствующие хроническому рецидивирующему течению заболевания, распространению устойчивости к антимикробным препаратам и их связь с нарушениями кишечной микробиоты. Известно, что большинство возбудителей мочевых инфекций происходят из кишечной микробиоты, где они длительно существуют, формируя резервуары. Нормальный состав и функции микробиоты препятствуют колонизации кишечника патогенными бактериями и снижают риск развития данного заболевания. Рассматриваются пути коррекции посредством диеты, пробиотиков и трансплантации фекальной микробиоты. Модуляция кишечной микробиоты может стать перспективным подходом в терапии и профилактике инфекций мочевых путей. Между тем, качественная доказательная база по эффективности рассматриваемой стратегии не сформирована. Требуются дальнейшие исследования в данном направлении.

Об авторах

Н. В. Стуров
ФГАОУ ВО «Российский университет дружбы народов» Минобрнауки России
Россия

Стуров Николай Владимирович — к. м. н., доцент, заведующий кафедрой общей врачебной практики, заместитель директора по учебной работе Медицинского института

Москва



С. В. Попов
ФГАОУ ВО «Российский университет дружбы народов» Минобрнауки России
Россия

Попов Сергей Витальевич — д. м. н., профессор кафедры общей врачебной практики Медицинского института, врач-уролог,

ул. Миклухо-Маклая, 6, г. Москва, 117198



В. А. Жуков
ФГАОУ ВО «Российский университет дружбы народов» Минобрнауки России
Россия

Жуков Владимир Андреевич — аспирант кафедры общей врачебной практики Медицинского института

Москва



Список литературы

1. Flores-Mireles A.L., Walker J.N., Caparon M., Hultgren S.J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13 (5): 269–284. doi: 10.1038/nrmicro3432.

2. Frumkin K. Bacteriology of urinary tract infections in emergency patients aged 0-36 months. J Emerg Med. 2015;48 (4): 405–415. doi: 10.1016/j.jemermed.2014.11.004.

3. Suskind A.M., Saigal C.S., Hanley J.M., Lai J., Setodji C.M., Clemens J.Q. Incidence and management of uncomplicated recurrent urinary tract infections in a national sample of women in the United States. Urology. 2016; 90: 50–55. doi: 10.1016/j.urology.2015.11.051.

4. Tandogdu Z., Wagenlehner F.M.E. Global epidemiology of urinary tract infections. Curr Opin Infect Dis. 2016; 29 (1): 73–79. doi: 10.1097/QCO.0000000000000228.

5. Gaitonde S., Malik R.D., Zimmern P.E. Financial Burden of Recurrent Urinary Tract Infections in Women: A Time-driven Activity-based Cost Analysis. Urology. 2019; 128: 47–54. doi: 10.1016/j.urology.2019.01.031.

6. Renard J., Ballarini S., Mascarenhas T., Zahran M., Quimper E., Choucair J., Iselin C.E. Recurrent lower urinary tract infections have a detrimental effect on patient quality of life: a prospective, observational study. Infect Dis Ther. 2015; 4 (1): 125–135. doi: 10.1007/s40121-014-0054-6.

7. Wagenlehner F., Wullt B., Ballarini S., Zingg D., Naber K.G. Social and economic burden of recurrent urinary tract infections and quality of life: a patient web-based study (GESPRIT). Expert Rev Pharmacoecon Outcomes Res. 2018; 18 (1): 107–117. doi: 10.1080/14737167.2017.1359543.

8. Brubaker L., Carberry C., Nardos R., Carter-Brooks C., Lowder J.L. American Urogynecologic Society Best-Practice Statement: Recurrent Urinary Tract Infection in Adult Women. Female Pelvic Med Reconstr Surg. 2018; 24 (5): 321–335. doi: 10.1097/SPV.0000000000000550.

9. Medina M., Castillo-Pino E. An introduction to the epidemiology and burden of urinary tract infections. Ther Adv Urol. 2019; 11. doi: 10.1177/1756287219832172.

10. Rich S.N., Klann E.M., Almond C.R., Larkin E.M., Nicolette G., Ball J.D. Associations between antibiotic prescriptions and recurrent urinary tract infections in female college students. Epidemiol Infect. 2019; 147: e119. doi: 10.1017/S0950268818003369.

11. McLellan L.K., Hunstad D.A. Urinary Tract Infection: Pathogenesis and Outlook. Trends Mol Med. 2016; 22 (11): 946–957. doi: 10.1016/j.molmed.2016.09.003.

12. Aragón I.M., Herrera-Imbroda B., Queipo-Ortuño M.I., Castillo E., Del Moral J.S., Gómez-Millán J., Yucel G., Lara M.F. The Urinary Tract Microbiome in Health and Disease. European Urology Focus. 2018; 4 (1): 128–138. doi: 10.1016/j.euf.2016.11.001.

13. Forde B.M., Roberts L.W., Phan M-D., Peters K.M., Fleming B.A., Russell C.W., Lenherr S.M., Myers J.B., Barker A.P., Fisher M.A., Chong T., Yin W., Chan K., Schembri M.A., Mulvey M.A., Beatson S.A. Population dynamics of an Escherichia coli ST131 lineage during recurrent urinary tract infection. Nature Communications. 2019; 10 (1): 3643. doi: 10.1038/s41467-019-11571-5.

14. Klein R.D., Hultgren S.J. Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new treatment strategies. Nature Reviews Microbiology. 2020; 18 (4): 211–226. doi: 10.1038/s41579-020-0324-0.

15. Thursby E., Juge N. Introduction to the human gut microbiota. Biochem J. 2017; 474 (11): 1823–1836. doi: 10.1042/BCJ20160510.

16. Rowland I., Gibson G., Heinken A., Scott K., Swann J., Thiele I., Tuohy K. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018; 57 (1): 1–24. doi: 10.1007/s00394-017-1445-8.

17. Lin L., Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017; 18 (1): 2. doi: 10.1186/s12865-016-0187-3.

18. Kåhrström C.T., Pariente N., Weiss U. Intestinal microbiota in health and disease. Nature. 2016; 535 (7610): 47–47. doi: 10.1038/535047a.

19. Sender R., Fuchs S., Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology. 2016; 14 (8): e1002533. doi: 10.1371/journal.pbio.1002533.

20. Harmsen H.J.M., de Goffau M.C. The Human Gut Microbiota. Adv Exp Med Biol. 2016; 902: 95–108. doi: 10.1007/978-3-319-31248-4_7.

21. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D.R., Fernandes G.R., Tap J., Bruls T., Batto J.M., Bertalan M., Borruel N., Casellas F., Fernandez L., Gautier L., Hansen T., Hattori M., Hayashi T., Kleerebezem M., Kurokawa K., Leclerc M., Levenez F., Manichanh C., Nielsen H.B., Nielsen T., Pons N., Poulain J., Qin J., Sicheritz-Ponten T., Tims S., Torrents D., Ugarte E., Zoetendal E.G., Wang J., Guarner F., Pedersen O., de Vos W.M., Brunak S., Doré J.; MetaHIT Consortium, Antolín M., Artiguenave F., Blottiere H.M., Almeida M., Brechot C., Cara C., Chervaux C., Cultrone A., Delorme C., Denariaz G., Dervyn R., Foerstner K.U., Friss C., van de Guchte M., Guedon E., Haimet F., Huber W., van Hylckama-Vlieg J., Jamet A., Juste C., Kaci G., Knol J., Lakhdari O., Layec S., Le Roux K., Maguin E., Mérieux A., Melo Minardi R., M'rini C., Muller J., Oozeer R., Parkhill J., Renault P., Rescigno M., Sanchez N., Sunagawa S., Torrejon A., Turner K., Vandemeulebrouck G., Varela E., Winogradsky Y., Zeller G., Weissenbach J., Ehrlich S.D., Bork P. Enterotypes of the human gut microbiome. Nature. 2011; 473 (7346): 174–180. doi: 10.1038/nature09944.

22. Jandhyala S.M., Talukdar R., Subramanyam C., Vuyyuru H., Sasikala M., Reddy D.N. Role of the normal gut microbiota. World J Gastroenterol. 2015; 21 (29): 8787–8803. doi: 10.3748/wjg.v21.i29.8787.

23. Browne H.P., Neville B.A., Forster S.C., Lawley T.D. Transmission of the gut microbiota: spreading of health. Nat Rev Microbiol. 2017; 15 (9): 531–543. doi: 10.1038/nrmicro.2017.50.

24. Coman V., Vodnar D.C. Gut microbiota and old age: Modulating factors and interventions for healthy longevity. Exp Gerontol. 2020; 141: 111095. doi: 10.1016/j.exger.2020.111095.

25. Hasan N., Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ. 2019; 7: e7502. doi: 10.7717/peerj.7502.

26. Wen L., Duffy A. Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. J Nutr. 2017; 147 (7): 1468S–1475S. doi: 10.3945/jn.116.240754.

27. Engen P.A., Green S.J., Voigt R.M., Forsyth C.B., Keshavarzian A. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota. Alcohol Res. 2015; 37 (2): 223-236.

28. Distrutti E., Monaldi L., Ricci P., Fiorucci S. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J Gastroenterol. 2016; 22 (7): 2219–2241. doi: 10.3748/wjg.v22.i7.2219.

29. Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G.A.D., Gasbarrini A., Mele M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019; 7 (1). doi: 10.3390/microorganisms7010014.

30. Valeriani F., Gallè F., Cattaruzza M.S., Antinozzi M., Gianfranceschi G., Postiglione N., Romano Spica V., Liguori G. Are nutrition and physical activity associated with gut microbiota? A pilot study on a sample of healthy young adults. Ann Ig. 2020; 32 (5): 521–527. doi: 10.7416/ai.2020.2372.

31. Bäumler A.J., Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016; 535 (7610): 85–93. doi: 10.1038/nature18849.

32. Magruder M., Edusei E., Zhang L., Albakry S., Satlin M.J., Westblade L.F., Malha L., Sze C., Lubetzky M., Dadhania D.M., Lee J.R. Gut commensal microbiota and decreased risk for Enterobacteriaceae bacteriuria and urinary tract infection. Gut Microbes. 12 (1). doi: 10.1080/19490976.2020.1805281.

33. Duvallet C., Gibbons S.M., Gurry T., Irizarry R.A., Alm E.J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun. 2017; 8. doi: 10.1038/s41467-017-01973-8.

34. Палагин И.С., Сухорукова М.В., Дехнич А.В., Эйдельштейн М.В., Перепанова Т.С., Козлов Р.С. и исследовательская группа «ДАРМИС-2018». Антибиотикорезистентность возбудителей внебольничных инфекций мочевых путей в России: результаты многоцентрового исследования «ДАРМИС-2018». Клиническая микробиология и антимикробная химиотерапия. 2019; 21 (2): 134–146. doi: 10.36488/cmac.2019.2.134-146.

35. Choe H-S., Lee S-J., Cho Y-H. et al. Aspects of urinary tract infections and antimicrobial resistance in hospitalized urology patients in Asia: 10-Year results of the Global Prevalence Study of Infections in Urology (GPIU). J Infect Chemother. 2018; 24 (4): 278–283. doi: 10.1016/j.jiac.2017.11.013.

36. Magruder M., Sholi A.N., Gong C., Zhang L., Edusei E., Huang J., Albakry S., Satlin M.J., Westblade L.F., Crawford C., Dadhania D.M., Lubetzky M., Taur Y., Littman E., Ling L., Burnham P., De Vlaminck I., Pamer E., Suthanthiran M., Lee J.R. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat Commun. 2019; 10 (1): 5521. doi: 10.1038/s41467-019-13467-w

37. Tchesnokova V.L., Rechkina E., Chan D., Haile H.G., Larson L., Ferrier K., Schroeder D.W., Solyanik T., Shibuya S., Hansen K., Ralston J.D., Riddell K., Scholes D., Sokurenko E.V. Pandemic uropathogenic fluoroquinolone-resistant Escherichia coli have enhanced ability to persist in the gut and cause bacteriuria in healthy women. Clin Infect Dis. 2020; 70 (5): 937–939. doi: 10.1093/cid/ciz547.

38. Nielsen K.L., Dynesen P., Larsen P., Frimodt-Møller N. Faecal Escherichia coli from patients with E.coli urinary tract infection and healthy controls who have never had a urinary tract infection. Journal of medical microbiology. doi: 10.1099/jmm.0.068783-0.

39. Conway T., Cohen P.S. Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol Spectr. 2015; 3 (3). doi: 10.1128/microbiolspec.MBP-0006-2014.

40. Madigan T., Johnson J.R., Clabots C., Johnston B.D., Porter S.B., Slater B.S., Banerjee R. Extensive Household Outbreak of Urinary Tract Infection and Intestinal Colonization due to Extended-Spectrum β-LactamaseProducing Escherichia coli Sequence Type 131. Clin Infect Dis. 2015; 61 (1): e5-12. doi: 10.1093/cid/civ273.

41. Mohamed M., Clabots C., Porter S.B., Bender T., Thuras P., Johnson J.R. Large fecal reservoir of Escherichia coli sequence type 131-H30 subclone strains that are shared within households and resemble clinical ST131H30 isolates. J Infect Dis. 2020; 221 (10): 1659–1668. doi: 10.1093/infdis/jiz669.

42. Thänert R., Reske K.A., Hink T., Wallace M.A., Wang B., Schwartz D.J., Seiler S., Cass C., Burnham C.A., Dubberke E.R., Kwon J.H., Dantas G. Comparative genomics of antibiotic-resistant uropathogens implicates three routes for recurrence of urinary tract infections. mBio. 2019; 10 (4). doi: 10.1128/mBio.01977-19.

43. Sabih A., Leslie S.W. Complicated Urinary Tract infections. in: StatPearls. statpearls publishing; 2020. Accessed November 29, 2020. http://www.ncbi.nlm.nih.gov/books/NBK436013/

44. Terlizzi M.E., Gribaudo G., Maffei M.E. UroPathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front Microbiol. 2017; 8. doi: 10.3389/fmicb.2017.01566.

45. Owrangi B., Masters N., Kuballa A., O’Dea C., Vollmerhausen T.L., Katouli M. Invasion and translocation of uropathogenic Escherichia coli isolated from urosepsis and patients with community-acquired urinary tract infection. Eur J Clin Microbiol Infect Dis. 2018; 37 (5): 833–839. doi: 10.1007/s10096-017-3176-4.

46. Baldiris-Avila R., Montes-Robledo A., Buelvas-Montes Y. Phylogenetic classification, biofilm-forming capacity, virulence factors, and antimicrobial resistance in uropathogenic Escherichia coli (UPEC). Curr Microbiol. 2020; 77 (11): 3361–3370. doi: 10.1007/s00284-020-02173-2.

47. Conover M.S., Ruer S., Taganna J. et al. Inflammation-Induced AdhesinReceptor Interaction Provides a Fitness Advantage to Uropathogenic E.coli during Chronic Infection. Cell Host Microbe. 2016; 20 (4): 482–492. doi: 10.1016/j.chom.2016.08.013.

48. Kalas V., Pinkner J.S., Hannan T.J., Hibbing M.E., Dodson K.W., Holehouse A.S., Zhang H., Tolia N.H., Gross M.L., Pappu R.V., Janetka J., Hultgren S.J. Evolutionary fine-tuning of conformational ensembles in FimH during host-pathogen interactions. Sci Adv. 2017; 3 (2): e1601944. doi: 10.1126/sciadv.1601944.

49. Luterbach C.L., Mobley H.L.T. Cross talk between MarR-like transcription factors coordinates the regulation of motility in uropathogenic Escherichia coli. Infect Immun. 2018; 86 (12). doi: 10.1128/IAI.00338-18.

50. Spaulding C.N., Klein R.D., Ruer S., Kau A.L., Schreiber H.L., Cusumano Z.T., Dodson K.W., Pinkner J.S., Fremont D.H., Janetka J.W., Remaut H., Gordon J.I., Hultgren S.J. Selective depletion of uropathogenic E.coli from the gut by a FimH antagonist. Nature. 2017; 546 (7659): 528–532. doi: 10.1038/nature22972.

51. Subashchandrabose S., Mobley H.L.T. Virulence and fitness determinants of uropathogenic Escherichia coli. Microbiol Spectr. 2015; 3 (4). doi: 10.1128/microbiolspec.UTI-0015-2012.

52. Nielsen K.L., Stegger M., Godfrey P.A., Feldgarden M., Andersen P.S., Frimodt-Møller N. Adaptation of Escherichia coli traversing from the faecal environment to the urinary tract. Int J Med Microbiol. 2016; 306 (8): 595–603. doi: 10.1016/j.ijmm.2016.10.005.

53. Hashemizadeh Z., Kalantar-Neyestanaki D., Mansouri S. Association between virulence profile, biofilm formation and phylogenetic groups of Escherichia coli causing urinary tract infection and the commensal gut microbiota: A comparative analysis. Microb Pathog. 2017; 110: 540–545. doi: 10.1016/j.micpath.2017.07.046.

54. Schreiber H.L.4th , Conover M.S., Chou W.C., Hibbing M.E., Manson A.L., Dodson K.W., Hannan T.J., Roberts P.L., Stapleton A.E., Hooton T.M., Livny J., Earl A.M., Hultgren S.J. Bacterial virulence phenotypes of Escherichia coli and host susceptibility determine risk for urinary tract infections. Sci Transl Med. 2017; 9 (382). doi: 10.1126/scitranslmed.aaf1283.

55. Nielsen K.L., Stegger M., Kiil K., Godfrey P.A., Feldgarden M., Lilje B., Andersen P.S., Frimodt-Møller N. Whole-genome Comparison of Urinary Pathogenic Escherichia coli and Faecal Isolates of UTI Patients and Healthy Controls. Int J Med Microbiol. 2017; 307 (8): 497–507. doi: 10.1016/j.ijmm.2017.09.007.

56. Köves B., Wullt B. The Roles of the Host and the Pathogens in Urinary Tract Infections. European Urology Supplements. 2016; 15 (4): 88–94. doi: 10.1016/j.eursup.2016.04.005.

57. Abraham S.N., Miao Y. The nature of immune responses to urinary tract infections. Nat Rev Immunol. 2015; 15 (10): 655–663. doi: 10.1038/nri3887.

58. The European Association of Urology. EAU Guidelines: Urological Infections. Uroweb. Accessed December 25, 2020. https://uroweb.org/guideline/urological-infections/

59. Faine B.A., Harland K.K., Porter B., Liang S.Y., Mohr N. A clinical decision rule identifies risk factors associated with antimicrobial-resistant urinary pathogens in the emergency department: a retrospective validation study. Ann Pharmacother. 2015; 49 (6): 649–655. doi: 10.1177/1060028015578259.

60. Horwitz D., McCue T., Mapes A.C., Ajami N.J., Petrosino J.F., Ramig R.F., Trautner B.W. Decreased microbiota diversity associated with urinary tract infection in a trial of bacterial interference. J Infect. 2015; 71 (3): 358–367. doi: 10.1016/j.jinf.2015.05.014.

61. Köves B., Cai T., Veeratterapillay R., Pickard R., Seisen T., Lam T.B., Yuan C.Y., Bruyere F., Wagenlehner F., Bartoletti R., Geerlings S.E., Pilatz A., Pradere B., Hofmann F., Bonkat G., Wullt B. Benefits and Harms of Treatment of Asymptomatic Bacteriuria: A systematic review and meta-analysis by the European association of urology urological infection guidelines panel. European Urology. 2017; 72 (6): 865–868. doi: 10.1016/j.eururo.2017.07.014.

62. Bahadori M., Motamedifar M., Derakhshandeh A., Firouzi R., Motamedi Boroojeni A., Alinejad M., Naziri Z. Genetic relatedness of the Escherichia coli fecal population and strains causing urinary tract infection in the same host. Microbiologyopen. 2019; 8 (6): e00759. doi: 10.1002/mbo3.759.

63. Magistro G., Stief C.G. The Urinary tract microbiome: the answer to all our open questions? Eur Urol Focus. 2019; 5 (1): 36–38. doi: 10.1016/j.euf.2018.06.011.

64. Mueller E.R., Wolfe A.J., Brubaker L. Female urinary microbiota. Curr Opin Urol. 2017; 27 (3): 282–286. doi: 10.1097/MOU.0000000000000396.

65. Thomas-White K., Brady M., Wolfe A.J., Mueller E.R. The bladder is not sterile: History and current discoveries on the urinary microbiome. Curr Bladder Dysfunct Rep. 2016; 11 (1): 18–24. doi: 10.1007/s11884-016-0345-8.

66. Thomas-White K., Forster S.C., Kumar N., Van Kuiken M., Putonti C., Stares M.D., Hilt E.E., Price T.K., Wolfe A.J., Lawley T.D. Culturing of female bladder bacteria reveals an interconnected urogenital microbiota. Nat Commun. 2018; 9. doi: 10.1038/s41467-018-03968-5.

67. Whiteside S.A., Razvi H., Dave S., Reid G., Burton J.P. The microbiome of the urinary tract--a role beyond infection. Nat Rev Urol. 2015; 12 (2): 81–90. doi: 10.1038/nrurol.2014.361.

68. Thomas-White K.J., Gao X., Lin H., Fok C.S., Ghanayem K., Mueller E.R., Dong Q., Brubaker L., Wolfe A.J. Urinary microbes and post-operative urinary tract infection risk in urogynecologic surgical patients. Int Urogynecol J. 2018; 29 (12): 1797–1805. doi: 10.1007/s00192-018-3767-3.

69. Beerepoot M., Geerlings S. Non-Antibiotic Prophylaxis for Urinary Tract Infections. Pathogens. 2016; 5 (2). doi: 10.3390/pathogens5020036

70. Matulay J.T., Mlynarczyk C.M., Cooper K.L. Urinary Tract infections in women: pathogenesis, diagnosis, and management. Curr Bladder Dysfunct Rep. 2016; 11 (1): 53–60. doi: 10.1007/s11884-016-0351-x.

71. Simpson H.L., Campbell B.J. Review article: dietary fibre–microbiota interactions. Aliment Pharmacol Ther. 2015; 42 (2): 158–179. doi: 10.1111/apt.13248.

72. De Filippis F., Pellegrini N., Vannini L., Jeffery I.B., La Storia A., Laghi L., Serrazanetti D.I., Di Cagno R., Ferrocino I., Lazzi C., Turroni S., Cocolin L., Brigidi P., Neviani E., Gobbetti M., O'Toole P.W., Ercolini D. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016; 65 (11): 1812–1821. doi: 10.1136/gutjnl-2015-309957.

73. Sakkas H., Bozidis P., Touzios C., Kolios D., Athanasiou G., Athanasopoulou E., Gerou I., Gartzonika C. Nutritional Status and the Influence of the Vegan Diet on the Gut Microbiota and Human Health. Medicina (Kaunas). 2020; 56 (2). doi: 10.3390/medicina56020088.

74. Lagier J-C., Mekhalif F., Merhej V., Chaudet H., Delerce J., Levasseur A., Raoult D. Lactobacillus reuteri: direct passage from ingested yogurts to urine microbiota. bioRxiv. Published online December 12, 2019; 2019.12.11. 872788. doi: 10.1101/2019.12.11.872788.

75. Kontiokari T., Laitinen J., Järvi L., Pokka T., Sundqvist K., Uhari M. Dietary factors protecting women from urinary tract infection. Am J Clin Nutr. 2003; 77 (3): 600–604. doi: 10.1093/ajcn/77.3.600.

76. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., Biddinger S.B., Dutton R.J., Turnbaugh P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505 (7484): 559–563. doi: 10.1038/nature12820.

77. Европейское региональное бюро ВОЗ. Англо-русский глоссарий основных терминов по вакцинологии и иммунизации (2009). Ссылка активна на 25.12.2020. https://www.euro.who.int/ru/publications/bibliographical-databases/terminology-glossariesclassifications

78. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S., Calder P.C., Sanders M.E. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014; 11 (8): 506–514. doi: 10.1038/nrgastro.2014.66.

79. Ивашкин В.Т., Маев И.В., Абдулганиева Д.И., Алексеенко С.А., Ивашкина Н.Ю., Корочанская Н.В., Маммаев С.Н., Полуэктова Е.А., Трухманов А.С., Успенский Ю.П., Цуканов В.В., Шифрин О.С., Зольникова О.Ю., Ивашкин К.В., Лапина Т.Л., Масленников Р.В., Ульянин А.И. Практические рекомендации Научного сообщества по содействию клиническому изучению микробиома человека (НСОИМ) и Российской гастроэнтерологической ассоциации (РГА) по применению пробиотиков для лечения и профилактики заболеваний гастроэнтерологического профиля у взрослых. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2020; 30 (2): 76–89. doi: 10.22416/1382-4376-2020-30-2-76-89.

80. Sihra N., Goodman A., Zakri R., Sahai A., Malde S. Nonantibiotic prevention and management of recurrent urinary tract infection. Nature Reviews Urology. 2018; 15 (12): 750–776. doi: 10.1038/s41585-018-0106-x.

81. Di Cerbo A., Palmieri B., Aponte M., Morales-Medina J.C., Iannitti T. Mechanisms and therapeutic effectiveness of lactobacilli. J Clin Pathol. 2016; 69 (3): 187–203. doi: 10.1136/jclinpath-2015-202976.

82. Chikindas M.L., Weeks R., Drider D., Chistyakov V.A., Dicks L.M.T. Functions and emerging applications of bacteriocins. Curr Opin Biotechnol. 2018; 49: 23–28. doi: 10.1016/j.copbio.2017.07.011.

83. Ng Q.X., Peters C., Venkatanarayanan N., Goh Y.Y., Ho C.Y.X., Yeo W-S. Use of Lactobacillus spp. to prevent recurrent urinary tract infections in females. Medical Hypotheses. 2018; 114: 49–54. doi: 10.1016/j.mehy.2018.03.001.

84. Hsuan Liu Y., Ying Ho C. Inhibitory effect of lactic acid bacteria on uropathogenic Escherichia coli — induced urinary tract infections. J Prob Health. 2016; 04 (02). doi: 10.4172/2329-8901.1000144.

85. Shim Y.H., Lee S.J., Lee J.W. Antimicrobial activity of lactobacillus strains against uropathogens. Pediatr Int. 2016; 58 (10): 1009–1013. doi: 10.1111/ped.12949.

86. Manzoor A., Ul-Haq I., Baig S., Qazi J.I., Seratlic S. Efficacy of locally isolated lactic acid bacteria against antibiotic-resistant uropathogens. Jundishapur J Microbiol. 2016; 9 (1). doi: 10.5812/jjm.18952.

87. de Llano D.G., Arroyo A., Cárdenas N., Rodríguez J.M., Moreno-Arribas M.V., Bartolomé B. Strain-specific inhibition of the adherence of uropathogenic bacteria to bladder cells by probiotic Lactobacillus spp. Pathogens and Disease. 2017; 75 (ftx043). doi: 10.1093/femspd/ftx043.

88. Wosinska L., Cotter P.D., O’Sullivan O., Guinane C. The Potential Impact of Probiotics on the Gut Microbiome of Athletes. Nutrients. 2019; 11 (10). doi: 10.3390/nu11102270.

89. Wieërs G., Belkhir L., Enaud R., Leclercq S., Philippart de Foy J.M., Dequenne I., de Timary P., Cani P.D. How Probiotics Affect the Microbiota. Front Cell Infect Microbiol. 2020; 9. doi: 10.3389/fcimb.2019.00454.

90. Beerepoot M.A., ter Riet G., Nys S., van der Wal W.M., de Borgie C.A., de Reijke T.M., Prins J.M., Koeijers J., Verbon A., Stobberingh E., Geerlings S.E. Lactobacilli vs antibiotics to prevent urinary tract infections: a randomized, double-blind, noninferiority trial in postmenopausal women. Arch Intern Med. 2012; 172 (9): 704–712. doi: 10.1001/archinternmed.2012.777.

91. Montorsi F., Gandaglia G., Salonia A., Briganti A., Mirone V. Effectiveness of a combination of cranberries, Lactobacillus rhamnosus, and vitamin C for the management of recurrent urinary tract infections in women: Results of a pilot study. Eur Urol. 2016; 70 (6): 912–915. doi: 10.1016/j.eururo.2016.05.042.

92. Koradia P., Kapadia S., Trivedi Y., Chanchu G., Harper A. Probiotic and cranberry supplementation for preventing recurrent uncomplicated urinary tract infections in premenopausal women: a controlled pilot study. Expert Rev Anti Infect Ther. 2019; 17 (9): 733–740. doi: 10.1080/14787210.2019.1664287.

93. Murina F., Vicariotto F., Lubrano C. Efficacy of an orally administered combination of Lactobacillus paracasei LC11, cranberry and D-mannose for the prevention of uncomplicated, recurrent urinary tract infections in women. Urologia. 2021; 88 (1): 64–68. doi: 10.1177/0391560320957483.

94. Wolff B.J., Price T.K., Joyce C.J., Wolfe A.J., Mueller E.R. Oral probiotics and the female urinary microbiome: a double-blinded randomized placebo-controlled trial. Int Urol Nephrol. 2019; 51 (12): 2149–2159. doi: 10.1007/s11255-019-02282-3.

95. Toh S.L., Lee B.B., Ryan S., Simpson J.M., Clezy K., Bossa L., Rice S.A., Marial O., Weber G.H., Kaur J., Boswell-Ruys C.L., Goodall S., Middleton J.W., Tuderhope M., Kotsiou G. Probiotics [LGG-BB12 or RC14-GR1] versus placebo as prophylaxis for urinary tract infection in persons with spinal cord injury [ProSCIUTTU]: a randomised controlled trial. Spinal Cord. 2019; 57 (7): 550–561. doi: 10.1038/s41393-019-0251-y.

96. Bakker G.J., Nieuwdorp M. Fecal Microbiota Transplantation: Therapeutic Potential for a Multitude of Diseases beyond Clostridium difficile. Microbiology Spectrum. 2017; 5 (4). doi: 10.1128/microbiolspec.BAD-0008-2017.

97. Tariq R., Pardi D.S., Tosh P.K., Walker R.C., Razonable R.R., Khanna S. Fecal microbiota transplantation for recurrent clostridium difficile infection reduces recurrent urinary tract infection frequency. Clin Infect Dis. 2017; 65 (10): 1745–1747. doi: 10.1093/cid/cix618.

98. Hocquart M., Pham T., Kuete E., Tomei E., Lagier J.C., Raoult D. Successful Fecal Microbiota Transplantation in a Patient Suffering From Irritable Bowel Syndrome and Recurrent Urinary Tract Infections. Open Forum Infect Dis. 2019; 6 (10): ofz398. doi: 10.1093/ofid/ofz398.

99. Biehl L.M., Cruz Aguilar R., Farowski F., Hahn W., Nowag A., Wisplinghoff H., Vehreschild M.J.G.T. Fecal microbiota transplantation in a kidney transplant recipient with recurrent urinary tract infection. Infection. 2018; 46 (6): 871–874. doi: 10.1007/s15010-018-1190-9.

100. Wang T., Kraft C.S., Woodworth M.H., Dhere T., Eaton M.E. Fecal microbiota transplant for refractory Clostridium difficile infection interrupts 25-year history of recurrent urinary tract infections. Open Forum Infect Dis. 2018; 5 (2). doi: 10.1093/ofid/ofy016.

101. Grosen A.K., Povlsen J.V., Lemming L.E., Jørgensen S.M.D., Dahlerup J.F., Hvas C.L. Faecal microbiota transplantation eradicated extended-spectrum beta-lactamase-producing Klebsiella pneumoniae from a renal transplant recipient with recurrent urinary tract infections. Case Rep Nephrol Dial. 2019; 9 (2): 102–107. doi: 10.1159/000502336.

102. Aira A., Rubio E., Vergara Gómez A., Fehér C., Casals-Pascual C., González B., Morata L., Rico V., Soriano A. rUTI Resolution after FMT for Clostridioides difficile infection: A case report. Infect Dis Ther. 2021; 10 (2): 1065–1071. doi: 10.1007/s40121-020-00365-8.

103. Cammarota G., Ianiro G., Tilg H., Rajilić-Stojanović M., Kump P., Satokari R., Sokol H., Arkkila P., Pintus C., Hart A., Segal J., Aloi M., Masucci L., Molinaro A., Scaldaferri F., Gasbarrini G., Lopez-Sanroman A., Link A., de Groot P., de Vos W.M., Högenauer C., Malfertheiner P., Mattila E., Milosavljević T., Nieuwdorp M., Sanguinetti M., Simren M., Gasbarrini A.; European FMT Working Group. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017; 66 (4): 569–580. doi: 10.1136/gutjnl-2016-313017.

104. Allegretti J.R., Mullish B.H., Kelly C., Fischer M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet. 2019; 394 (10196): 420–431. doi: 10.1016/S0140-6736(19)31266-8.


Для цитирования:


Стуров Н.В., Попов С.В., Жуков В.А. Патогенетическая роль и возможности коррекции нарушения кишечной микробиоты при инфекции мочевых путей. Антибиотики и Химиотерапия. 2021;66(7-8):100-108. https://doi.org/10.37489/0235-2990-2021-66-7-8-100-108

For citation:


Sturov N.V., Popov S.V., Zhukov V.A. Pathogenetic Role and Possibilities for Correction of Gut Microbiota Disorders in Urinary Tract Infections. Antibiotics and Chemotherapy. 2021;66(7-8):100-108. (In Russ.) https://doi.org/10.37489/0235-2990-2021-66-7-8-100-108

Просмотров: 135


ISSN 0235-2990 (Print)

 collaborator - эффективное продвижение статьями