Preview

Антибиотики и Химиотерапия

Расширенный поиск

Методы и подходы для определения антибиотиков

https://doi.org/10.37489/0235-2990-2022-67-1-2-53-61

Полный текст:

Аннотация

Антибактериальные препараты являются одними из самых важных лекарств, используемых в здравоохранении и ветеринарии. Широкое использование антибиотиков привело к значительному загрязнению окружающей среды и, особенно, водных ресурсов. В связи с этим актуальным является проблема контроля содержания антибиотиков в лекарственных формах, а также их определение в жидкостях, в продуктах питания, сточных водах фармацевтических предприятий и других  объектах. Для обнаружения антибиотиков используют микробиологические, спектрофотометрические, флуориметрические, хемилюминесцентные, хроматографические, а также биосенсорные методы. В статье приводится обзор методов и подходов для определения антибиотиков. Показан прогресс в разработке биосенсорных систем для анализа антибиотиков.

Об авторах

А. К. М. Алсовэйди
Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского
Россия

Алсовэйди Али  Кадхим Мохаммед —  аспирант  очной формы обучения.

Саратов.


Конфликт интересов:

Нет



О. А. Караваева
Институт биохимии и физиологии растений и микроорганизмов РАН
Россия

Караваева Ольга Александровна — кандидат биологических наук, научный  сотрудник лаборатории биохимии.

Саратов.


Конфликт интересов:

Нет



О. И. Гулий
Институт биохимии и физиологии растений и микроорганизмов РАН; Саратовский государственный аграрный университет им. Н.И. Вавилова
Россия

Гулий Ольга Ивановна — доктор биологических наук, профессор, ведущий  научный сотрудник лаборатории биохимии ИБФРМ РАН; профессор кафедры микробиологии, биотехнологии и химии СГАУ им. Вавилова.

пр-т Энтузиастов, 13, Саратов, 410049.


Конфликт интересов:

Нет



Список литературы

1. Antibiotic Resistance Protocols: Second Edition, Gillespie S.H., McHugh T.D. (eds.), Methods in molecular biology. Springer Science+Business Media. LLC 2010; 642.

2. Drug resistance in microorganisms — Handbooks, manuals, etc. [DNLM: 1. Microbial Sensitivity Tests — methods — Laboratory Manuals. 2. Anti-Bacterial Agents — pharmacology — Laboratory Manuals. 3. Drug Resistance, Bacterial — Laboratory Manuals. QW 25.5 M6 M2945 2005] I. Cavalieri, Stephen J. II. American Society for Microbiology.

3. Кулапина Е.Г., Баринова О.И., Кулапина О.И., Утц, И.А., Снесарев С.В. Современные методы определения антибиотиков в биологических и лекарственных средах (обзор). Антибиотики и химиотер. 2009; 54 (9–10): 53–60.

4. Riediker S., Diserens J-M., Stadler R.H. Analysis of β-lactam antibiotics in incurred raw milk by rapid test methods and liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 2001; 49: 4171–4176. doi: 10.1021/jf010057k.

5. Althaus R.L., Molina M.P., Rodriguez M., Fernandez N. Detection limits of β-lactam antibiotics in ewe milk by penzym enzymatic test. J. Food Prot. 2001; 64: 1844–1847. doi: 10.4315/0362-028X-64.11.1844.

6. Кулапина Е.Г., Баринова О.И., Кулапина О.И., Утц, И.А., Снесарев С.В. Современные методы определения антибиотиков в биологических и лекарственных средах (обзор). Антибиотики и химиотер. 2009; 54 (9–10): 53–60.

7. Cháfer-Pericás C., Maquieira Á., Puchades R. Fast screening methods to detect antibiotic residues in food samples. Trends Anal Chem. 2010; 29:1038–1049.

8. Abu-Shandi K.H. Determination of vancomycin in human plasma using high-performance liquid chromatography with fluorescence detection. Anal Bioanal Chem. 2009; 395 (2): 527–532.

9. Elragehy N.A., Abdel-Moety E.M., Hassan N.Y., Rezk M.R. Stability-indicating determination of meropenem in presence of its degradation product. Talanta. 2008; 77 (1): 28–36. doi: 10.1016/j.talanta.2008.06.045.

10. Mattoes H.M., Kuti J.L., Drusano G.L., Nicolau D.P. Optimizing antimicrobial pharmacodynamics: dosage strategies for meropenem. Clin Ther. 2004; (8): 1187–1198. doi: 10.1016/s0149-2918(04)80001-8.

11. Nemutlu E., Kir S., Katlan D., Beksaç M.S. Simultaneous multiresponse optimization of an HPLC method to separate seven cephalosporins in plasma and amniotic fluid: application to validation and quantification of cefepime, cefixime and cefoperazone. Talanta. 2009; 80 (1): 117–126. doi: 10.1016/j.talanta.2009.06.034.

12. Rote A.R., Pingle S.P. Reverse phase-HPLC and HPTLC methods for determination of gemifloxacin mesylate in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2009; 877 (29): 3719–3723. doi: 10.1016/j.jchromb.2009.08.013. Epub 2009 Aug 18.

13. Pires de Abreu L.R., Ortiz R.M., de Castro S.C., Pedrazzoli J. Jr. HPLC determination of amoxicillin comparative bioavailability in healthy volunteers after a single dose administration. J Pharm Pharm Sci. 2003; 6 (2): 223–230.

14. Hanko V.P., William R.L., Dasenbrock C.O., Rohrer J.S. Determination of sulfur-containing antibiotics using high-performance liquid chromatography with integrated pulsed amperometric detection. Drug Dev. Res. 2001; 53 (4): 268–280. doi: 10.1002/ddr.1196.

15. Berlina A.N., Bartosh A.V., Sotnikov D.V., Zherdev A.V., Xu C., Dzantiev B.B. Complexes of gold nanoparticles with antibodies in immunochromatography: comparison of direct and indirect immobilization of antibodies for the detection of antibiotics. Nanotechnol Russia. 2018;13: 430–438. doi: 10.1134/S1995078018040031.

16. Hendrickson O.D., Zvereva E.A., Shanin I.A., Zherdev A.V., Dzantiev B.B. Development of a multicomponent immunochromatographic test system for the detection of fluoroquinolone and amphenicol antibiotics in dairy products. Journal of the Science of Food and Agriculture. 2019; 99 (8): 3834–3842. doi: 10.1002/jsfa.9605.

17. Gazzaz S.S., Rasco B.A., Dong F.M. Application of immunochemical assays to food analysis. Crit Rev Food Sci Nutr. 1992; 32: 197–229. doi: 10.1080/10408399209527597.

18. Wang S., Xu B., Zhang Y., He J.X. Development of enzyme-linked immunosorbent assay (ELISA) for the detection of neomycin residues in pig muscle, chicken muscle, egg, fish, milk and kidney. Meat Sci. 2009; 82: 53–58. doi: 10.1016/j.meatsci.2008.12.003. Epub 2008 Dec 14

19. Shen X., Chen J., Lv S., Sun X., Dzantiev B.B., Eremin S.A., Zherdev A.V., Xu J., Sun Y., Lei H. Fluorescence polarization immunoassay for determination of enrofloxacin in pork liver and chicken. Molecules. 2019; 24: 4462. doi:10.3390/molecules24244462.

20. Walily A.F.M. El., Gazy A.A.K., Belal S.F., Khamis E.F. Use of cerium (IV) in the spectrophotometric and spectrofluorimetric determinations of penicillins and cephalosporins in their pharmaceutical preparations, Spectrosc Lett. 2000; 33: 931–948. doi: 10.1080/00387010009350169.

21. Al-Momani I.F. Flow-injection spectrophotometric determination of amoxcillin, cephalexin, ampicillin, and cephradine in pharmaceutical formulations. Anal Lett. 2004; 37: 2099–2110. doi: 10.1081/AL-200026683.

22. Islam R., Luu H.T.L., Kuss S. Review — electrochemical approaches and advances towards the detection of drug resistance. J Electrochemical Society. 2020; 167: 045501.

23. Raksawong P., Nurerk P., Chullasat K., Kanatharana P., Bunkoed O. A polypyrrole doped with fluorescent CdTe quantum dots and incorporated into molecularly imprinted silica for fluorometric determination of ampicillin. Microchim Acta. 2019; 186: 338. doi: 10.1007/s00604-019-3447-0.

24. Dumont E., Vergalli J., Conraux L., Taillier C., Vassort A., Pajovic J., Réfrégiers M., Mourez M., Pagès J.M. Antibiotics and efflux: combined spectrofluorimetry and mass spectrometry to evaluate the involvement of concentration and efflux activity in antibiotic intracellular accumulation. J Antimicrob Chemother. 2019; 74 (1): 58–65. doi:10.1093/jac/dky396.

25. Salam A.H. Al-Ameri, Najlah M.H. Al-Waeli Differential pulse polarographic study of amoxicillin and ciprofloxacin and its determination in pharmaceuticals. Int J Bioanal Methods Bioequival Stud. 2016; 3 (1): 47–54. doi: dx.doi.org/10.19070/2470-4490-150006.

26. Deroco P.B., Rocha-Filho R.C., Fatibello-Filho O. A new and simple method for the simultaneous determination of amoxicillin and nimesulide using carbon black within a dihexadecylphosphate film as electrochemical sensor. Talanta. 2018; 179: 115–123. doi: 10.1016/j.talanta.2017.10.048.

27. Wong A., Santos A.M., Cincotto F.H., Moraes F.C., Fatibello-Filho O., Sotomayor M.D.P.T. A new electrochemical platform based on low cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices. Talanta. 2020; 206: 120252. doi: 10.1016/j.talanta.2019.120252.

28. Chotinantakul K., Suginta W., Schulte A. Advanced amperometric respiration assay for antimicrobial susceptibility testing. Anal Chem. 2014; 86 (20): 10315–22. doi: 10.1021/ac502554s. Epub 2014 Oct 1. PMID: 25222107.

29. Hanko V.P., William R.L., Dasenbrock C.O., Rohrer J.S. Determination of sulfur-containing antibiotics using high-performance liquid chromatography with integrated pulsed amperometric detection. Drug Dev Res. 2001; 53 (4): 268–280. doi: 10.1002/ddr.1196.

30. Auletta S., Galli F., Lauri C., Martinelli D., Santino I., Signore A. Imaging bacteria with radiolabelled quinolones, cephalosporins and siderophores for imaging infection: a systematic review. Clin Transl Imaging. 2016; 4: 229–252. doi: 10.1007/s40336-016-0185-8.

31. Vrioni G., Tsiamis C., Oikonomidis G., Theodoridou K., Kapsimali V., Tsakris A. MALDI-TOF mass spectrometry technology for detecting biomarkers of antimicrobial resistance: current achievements and future perspectives. Ann Transl Med. 2018; 6 (12): 240.

32. Jung J.S., Eberl T., Sparbier K., Lange C., Kostrzewa M., Schubert S., Wieser A. Rapid detection of antibiotic resistance based on mass spectrometry and stable isotopes. Eur J Clin Microbiol Infect Dis. 2014; 33: 949–955. doi: 10.1007/s10096-013-2031-5.

33. Turner A.P.F., Karube I., Wilson G.S. Biosensors: fundamentals and applications. Oxford University Press, Oxford. 1987.

34. Leca–Bouvier B., Blum L. Enzyme for biosensing application. Recognition receptors in biosensors. M. Zourob (ed.) Springer. New York: 2010; 177–220.

35. Moreira F., Dutra R., Noronha J., Sales G. Novel sensory surface for creatine kinase electrochemical detection. Biosensors Bioelecton. 2014; 56: 217–222. doi: 10.1016/j.bios.2013.12.052.

36. Stevenson H.S., Shetty S.S., Thomas N.J., Dhamu V.N., Bhide A., Prasad S. Ultrasensitive and rapid-response sensor for the electrochemical detection of antibiotic residues within meat samples. ACS Omega. 2019; 4: 6324−6330. doi: 10.1021/acsomega.8b03534.

37. Santos A.M., Wong A., Cincotto F.H., Moraes F.C., Fatibello-Filho O. Square-wave adsorptive anodic stripping voltammetric determination of norfloxacin using a glassy carbon electrode modified with carbon black and CdTe quantum dots in a chitosan film. Mikrochim Acta. 2019; 186 (3): 148. doi: 10.1007/s00604-019-3268-1.

38. Fernandez F., Hegnerova K., Piliarik M., Sanchez-Baeza F., Homola J., Marco M.P. A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples. Biosensors Bioelectron. 2010; 26 (4): 1231–1238. doi: 10.1016/j.bios.2010. 06.012. Epub 2010 Jun 20.

39. Fernandez F., Pinacho D.G., Sanchez-Baeza F., Marco M.P. Portable surface plasmon resonance immunosensor for the detection of fluoroquinolone antibiotic residues in milk. J Agric Food Chem. 2011; 59: 5036–5043. doi: 10.1021/jf1048035. Epub 2011 Apr 8.

40. Conzuelo F., Gamella M., Campuzano S., Reviejo A.J., Pingarrón J.M. Disposable amperometric magneto-immunosensor for direct detection of tetracyclines antibiotics residues in milk. Anal Chim Acta. 2012; 737: 29–36. doi: 10.1016/j.aca.2012.05.051.

41. Song E., Yu M., Wang Y., Hu W., Cheng D., Swihart M.T., Song Y. Multicolor quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosens Bioelectron. 2015; 72: 320–325. doi: 10.1016/j.bios.2015.05.018.

42. Reder-Christ K., Bendas G. Biosensor applications in the field of antibiotic research–a review of recent developments. Sensors. 2011; 11: 9450–9466. doi: 10.3390/s111009450.

43. Famulok M., Mayer G. Aptamer modules as sensors and detectors. Acc Chem Res. 2011; 44: 1349–1358. doi: 10.1021/ar2000293. Epub 2011 Aug 5.

44. Song K.M., Jeong E., Jeon W., Jo H., Ban C. A coordination polymer nanobelt (CPNB)-based aptasensor for sulfadimethoxine. Biosensors Bioelectron. 2012; 33 (1): 113–119. doi: 10.1016/j.bios.2011.12.034. Epub 2011 Dec 29.

45. Ni H., Zhang S., Ding X., Mi T., Wang Z., Liu M. Determination of enrofloxacin in bovine milk by a novel single-stranded DNA aptamer chemiluminescent enzyme immunoassay. Analytical Letters. 2014; 47: 2844–2856.

46. Zhou L., Li D-J., Gai L., Wang J-P., Li Y-B. Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sens Actuators B Chem. 2012; 162 (1): 201–208. doi: 10.1016/j.snb.2011.12.067.

47. Yan L., Luo C., Mao W., Zhang D., Ding S. A simple and sensitive electrochemical aptasensor for determination of Chloramphenicol in honey based on target-induced strand release. J Electroanalytical Chemistry. 2012; 687: 89–94. doi: 10.1016/j.jelechem.2012.10.016.

48. Taghdisi S.M., Danesh N.M., Nameghi M.A., Ramezani M., Abnous K. A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum. Food Chem. 2016; 203:145–149. doi: 10.1016/j.foodchem.2016.02.017. Epub 2016 Feb 2

49. Wu S., Zhang H., Shi Z., Duan N., Fang C.C., Dai S., Wang Z. Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles Author links open overlay panel. Food Control. 2015; 50: 597–604. doi: 10.1016/j.foodcont.2014.10.003.

50. Leung K-H., He H-Z., Chan DS-H., Fu W-C., Leung C-H., Ma D-L. An oligonucleotide-based switch-on luminescent probe for the detection of kanamycin in aqueous solution. Sens Actuators B Chem. 2013; 177: 487–492. doi: 10.1016/j.snb.2012.11.053.

51. Lian W., Liu S., Yu J., Xing X., Li J., Cui M., Huang J. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens Bioelectron. 2012; 38: 163–169. doi: 10.1016/j.bios.2012.05.017.

52. Liu B., Tang D., Zhang B., Que X., Yang H., Chen G. Au(III)-promoted magnetic molecularly imprinted polymer nanospheres for electrochemical determination of streptomycin residues in food. Biosens Bioelectron. 2013; 41: 551–556. doi: 10.1016/j.bios.2012.09.021. Epub 2012 Sep 24.

53. Yola M.L., Uzun L., Özaltin N., Denizli A. Development of molecular imprinted nanosensor for determination of tobramycin in pharmaceuticals and foods. Talanta. 2014; 120: 318–324. doi: 10.1016/j.talanta.2013.10.064. Epub 2013 Dec 1.

54. Ермолаева Т.Н., Чернышова В.Н., Бессонов О.И. Микро- и наночастицы полимеров с молекулярными отпечатками — синтез, характеристика и применение в пьезокварцевых сенсорах. Сорбционные и хроматографические процессы. 2015; 15 (3): 345–365.

55. Munteanu F-D., Titoiu A.M., Marty J-L., Vasilescu A. Detection of antibiotics and evaluation of antibacterial cctivity with screen-printed electrodes. Sensors. 2018; 18: 901. doi: 10.3390/s18030901.

56. Ermolaeva T.N., Farafonova O.V., Chernyshova V.N., Zyablov A.N., Tarasova N.V. A Piezoelectric Sensor Based on Nanoparticles of Ractopamine Molecularly Imprinted Polymers. Journal of Analytical Chemistry. 2020; 75 (10): 1270–1277.

57. Gruhl F.J., Länge K. Surface acoustic wave (SAW). Biosensor for rapid and label-free detection of penicillin G in milk. Food Anal Methods. 2014; 7: 430–437. doi: 10.1007/s12161-013-9642.

58. Karaseva N.A., Ermolaeva T.N. A piezoelectric immunosensor for chloramphenicol detection in food. Talanta. 2012; 93: 4448. doi: 10.1016/j.talanta.2011.12.047.

59. Гулий О. И., Зайцев Б. Д., Шихабудинов А. М., Бородина И. А., Ларионова О. С., Жничкова Е. Г. Определение чувствительности микробных клеток к полимиксину методом электроакустического анализа. Антибиотики и химиотер. 2017; 62 (3–4): 3–9.

60. Ferrini A.M., Mannoni V., Carpico G., Pellegrini G.E. Detection and identification of β-lactam residues in milk using a hybrid biosensor. J Agric Food Chem. 2008; 56: 784–788. doi: 10.1021/jf071479i.

61. Das S., Kumar N., Vishweswaraiah R.H., Haldar L., Gaare M., Singh V.K., Puniya A.K. Microbial based assay for specific detection of β-lactam group of antibiotics in milk. J Food Sci Technol. 2014; 51: 1161–1166. doi: 10.1007/s13197-011-0609-4.

62. Narang R., Mohammadi S., Mohammadi Ashani M., Sadabadi H., Hejazi H., Hossein Zarifi M., Sanati-Nezhad A. Sensitive, real-time and non-intrusive detection of concentration and growth of pathogenic bacteria using microfluidic-microwave ring resonator biosensor. Sci. Rep. 2018; 8: 15807. doi: 10.1038/s41598-018-34001-w.

63. Guliy O.I., Zaitsev B.D., Smirnov A.V., Karavaeva O.A., Alsowaidi A.К.М., Larionova O.S., Borodina I.A. Microbial sensor for determination of amoxicillin activity. Antibiotics and chemotherapy. 2020; 1–2: 3–9. doi: 10.1016/0235-2990-2020-65-1-2-3-9.

64. Mungroo N.A., Neethirajan S. Biosensors for the detection of antibiotics in poultry industry — a review. Biosensors. 2014; 4: 472–493. doi: 10.3390/bios4040472.

65. Chen H-F., Lin C-H., Su C-Y., Chen H-P., Chiang Y-L. Surface plasmon resonance biotechnology for antimicrobial susceptibility test. Chapter 21 in the book Biosensors for Health, Environment and Biosecurity. 2011; 453–468.

66. Galatus R., Feier B., Cristea C., Cennamo N., Zeni L. SPR based hybrid electro-optic biosensor for β-lactam antibiotics determination in water. Proceedings of the SPIE, 2017; 10405: 104050C6.

67. Blidar A., Feier B., Tertis M., Galatus R., Cristea C. Electrochemical surface plasmon resonance (EC-SPR) aptasensor for ampicillin detection. Anal Bioanal Chem. 2019; 411: 1053–1065. doi: 10.1007/s00216-018-1533-5.

68. Luo Q., Yu N., Shi C., Wang X., Wu J. Surface plasmon resonance sensor for antibiotics detection based on photo-initiated polymerization molecularly imprinted array. Talanta. 2016; 161: 797803. doi: 10.1016/j.talanta.2016.09.049.

69. Frasconi M., Tel-Vered R., Riskin M., Willner I. Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functionalized Au nanoparticle composites. Anal Chem. 2010; 82: 2512–2519. doi: 10.1021/ac902944k

70. Suárez G., Jin Y.-H., Auerswald J., Berchtold S., Knapp H.F., Diserens J-M., Leterrier Y., Månson J-A.E., Voirin G. Lab-on-a-chip for multiplexed biosensing of residual antibiotics in milk. Lab Chip. 2009; 9: 1625–1630. doi: 10.1039/b819688e. Epub 2009 Mar 13.

71. Guliy O.I., Bunin V.D. Electro-optical analysis as sensing system for detection and diagnostics of bacterial cells. In: P. Chandra, L.M. Pandey (Eds.), Biointerface Engineering: Prospects in Medical Diagnostics and Drug Delivery, Springer Nature Singapore Pte Ltd. 2020; 233–254. https://link.springer.com/chapter/10.1007/978-981-15-4790-4_11.


Рецензия

Для цитирования:


Алсовэйди А.К., Караваева О.А., Гулий О.И. Методы и подходы для определения антибиотиков. Антибиотики и Химиотерапия. 2022;67(1-2):53-61. https://doi.org/10.37489/0235-2990-2022-67-1-2-53-61

For citation:


Alsowaidi A.K., Karavaeva O.A., Guliy O.I. Methods and Approaches for Antibiotics Deteсtion. Antibiotics and Chemotherapy. 2022;67(1-2):53-61. (In Russ.) https://doi.org/10.37489/0235-2990-2022-67-1-2-53-61

Просмотров: 147


ISSN 0235-2990 (Print)