Preview

Антибиотики и Химиотерапия

Расширенный поиск

Мобильные генетические элементы прокариот и их роль в формировании резистентности к антибиотикам у патогенных бактерий

https://doi.org/10.37489/0235-2990-2022-67-1-2-62-74

Полный текст:

Аннотация

Появление  и распространение  в последние десятилетия штаммов  патогенных  бактерий, резистентных к антибиотикам, является тревожной тенденцией и серьёзным  вызовом для будущего человечества во всем мире. Ситуация усугубляется горизонтальным переносом и распространением среди микроорганизмов генов устойчивости к антибиотикам посредством мобильных генетических элементов (МГЭ) — чрезвычайно  пёстрой группы  прокариотического мобилома, способных  внутри- или межклеточно перемещать  молекулы  ДНК. Мобильные  генетические элементы играют центральную роль в фенотипической адаптации бактерий, обеспечении устойчивости к антибиотикам и физическим параметрам среды обитания, приобретении факторов патогенности и трансформации путей метаболизма. Однако при планировании стратегий по сдерживанию распространения устойчивости  патогенов к антимикробным препаратам  важное значение  МГЭ  часто упускается из виду. Целью  этого обзора является  краткая характеристика основных  типов МГЭ  (плазмид, транспозонов, бактериофагов, интегронов, интронов), участвующих  в формировании резистентности к антибиотикам у патогенных бактерий с акцентом  на представителей семейства Enterobacteriaceae. В заключительной части обзора рассматриваются перспективные современные стратегии борьбы с антимикробной устойчивостью, основанные на использовании антиплазмидных подходов и CRISPR/Cas  технологий.

Об авторах

Б. Г. Андрюков
НИИ эпидемиологии и микробиологии им. Г.П. Сомова Роспотребнадзора; ДФ ГНИИИ военной медицины МО РФ
Россия

Андрюков Борис  Георгиевич — доктор медицинских наук, ведущий  научный сотрудник лаборатории кишечных инфекций.

ул. Сельская, д. 1, Владивосток, 690087.


Конфликт интересов:

Нет



Н. Н. Беседнова
НИИ эпидемиологии и микробиологии им. Г.П. Сомова Роспотребнадзора
Россия

Беседнова Наталья Николаевна — академик РАН, доктор медицинских наук, профессор,  главный научный  сотрудник лаборатории иммунологии.

Владивосток.


Конфликт интересов:

Нет



Т. С. Запорожец
НИИ эпидемиологии и микробиологии им. Г.П. Сомова Роспотребнадзора
Россия

Запорожец Татьяна Станиславовна — доктор медицинских наук, главный научный сотрудник лаборатории иммунологии, заместитель по науке директора.

Владивосток.


Конфликт интересов:

Нет



Список литературы

1. Hoffmann M., Pettengill J.B., Gonzalez-Escalona N., Miller J., Ayers S.L., Zhao S. et al. Comparative sequence analysis of multidrug-resistant IncA/C plasmids from Salmonella enterica. Front Microbiol. 2017; 8: 1459. doi: 10.3389/fmicb.2017.01459.

2. WHO (2021): World Health Organization official website. Available online at: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (Accessed January 03, 2022).

3. CDC (2021): Centers for Disease Control and Prevention official website. Available online at: https://www.cdc.gov/drugresistance/index.html [accessed January 04, 2022].

4. FDA (2018): The National Antimicrobial Resistance Monitoring System. Available online at: Resistance/NationalAntimicrobialResistanceMonitoringSystem/defaulthtm (Accessed January 06 2022).

5. McLinden T., Sargeant J.M., Thomas M.K., Papadopoulos A., Fazil A. Component costs of foodborne illness: a scoping review. BMC Public Health. 2014; 14: 509. doi: 10.1186/1471-2458-14-509.

6. Андрюков Б.Г., Запорожец Т.С., Беседнова Н.Н. Перспективные стратегии поиска новых средств борьбы с инфекционными заболеваниями. Антибиотики и химиотер. 2018; 63 (1–2): 44–55. doi: 10.5281/zenodo.1306245.

7. Guimaraes L.C., Florczak-Wyspianska J., de Jesus L.B., Viana M.V., Silva A., Ramos R.T. et al. Inside the Pan-genome — methods and software overview. Curr Genomics. 2015; 16 245–252. doi: 10.2174/1389202916666150423002311.

8. Humphrey, S., Fillol-Salom, A., Quiles-Puchalt, N. et al. Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements. Nat Commun 2021; 12: 6509.

9. Hall J.P.J., Harrison E., Baltrus D.A. Introduction: the secret lives of microbial mobile genetic elements. Philos Trans R Soc Lond B Biol Sci. 2022; 377 (1842): 20200460. doi: 10.1098/rstb.2020.0460.

10. Yu Z., He P., Shao L., Zhang H., Lü F. Co-occurrence of mobile genetic elements and antibiotic resistance genes in municipal solid waste landfill leachates: A preliminary insight into the role of landfill age. Water Res. 2016; 106: 583–592. doi: 10.1016/j.watres.2016.10.042.

11. Fricke W.F., Mammel M.K., McDermott P.F., Tartera C., White D.G., Leclerc J.E. et al. Comparative genomics of 28 Salmonella enterica isolates: evidence for CRISPR-mediated adaptive sublineage evolution. J. Bacteriol. 2011; 193, 3556–3568. doi: 10.1128/JB.00297-11.

12. Романова Ю.М.,Гинцбург А.Л. Мобильные генетические элементы и их роль в эволюции патогенных бактерий. Вестник Российской академии медицинских наук. 2001; 11: 15.

13. Partridge S.R., Kwong S.M., Firth N., Jensen S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018; 31 (4): e00088-17. doi:10.1128/CMR.00088-17.

14. Ghaly T.M.,Gillings M.R. New perspectives on mobile genetic elements: a paradigm shift for managing the antibiotic resistance crisis. Philos Trans R Soc Lond B Biol Sci. 2022; 377 (1842): 20200462. doi: 10.1098/rstb.2020.0462.

15. Wiesner M., Fernández-Mora M, Cevallos M.A., Zavala-Alvarado C., Zaidi M.B., Calva E., Silva C. Conjugative transfer of an IncA/C plasmid-borne blaCMY-2 gene through genetic re-arrangements with an IncX1 plasmid. BMC Microbiol. 2013; 13: 264. doi: 10.1186/1471-2180-13-264.

16. Stalder T., Barraud O.,Casellas M.,Dagot C.,Ploy M.C. Integron involvement in environmental spread of antibiotic resistance. Front Microbiol. 2012; 3: 119. doi: 10.3389/fmicb.2012.00119.

17. Yang Q.E., Sun J., Li L., Deng H., Liu B.T., Fang L.X., Liao X.P., Liu Y.H. IncF plasmid diversity in multi-drug resistant Escherichia coli strains from animals in China. Front Microbiol. 2015; 6: 964. doi: 10.3389/fmicb.2015.00964.

18. Hülter N., Ilhan J., Wein T., Kadibalban A.S., Hammerschmidt K., Dagan T. An evolutionary perspective on plasmid lifestyle modes. Curr Opin Microbiol. 2017; 38: 74–80. doi: 10.1016/j.mib.2017.05.001.

19. Hall J.P.J., Brockhurst M.A., Dytham C., Harrison E. The evolution of plasmid stability: Are infectious transmission and compensatory evolution competing evolutionary trajectories? Plasmid. 2017; 91: 90–95. doi: 10.1016/j.plasmid.2017.04.003.

20. Wang Y., Batra A., Schulenburg H., Dagan T. Gene sharing among plasmids and chromosomes reveals barriers for antibiotic resistance gene transfer. Philos Trans R Soc Lond B Biol Sci. 2022; 377 (1842): 20200467. doi: 10.1098/rstb.2020.0467.

21. Orlek A., Stoesser N., Anjum M.F. et al. Plasmid classification in an era of whole-genome sequencing: application in studies of antibiotic resistance epidemiology. Front Microbiol. 2017; 8: 182. doi: 10.3389/fmicb.2017.00182.

22. Mahérault A.C., Kemble H., Magnan M., Gachet B., Roche D., Le Nagard H., Tenaillon O., Denamur E., Branger C., Landraud L. Advantage of the F2:A1:B- IncF pandemic plasmid over incc plasmids in in vitro acquisition and evolution of blaCTX-M gene-bearing plasmids in Escherichia coli. Antimicrob Agents Chemother. 2019; 63 (10): e01130-19. doi: 10.1128/AAC.01130-19.

23. Gołebiewski M., Kern-Zdanowicz I., Zienkiewicz M. et al. Complete nucleotide sequence of the pCTX-M3 plasmid and its involvement in spread of the extended-spectrum beta-lactamase gene blaCTX-M-3. Antimicrob Agents Chemother. 2007; 51 (11): 3789–3795. doi:10.1128/AAC.00457-07.

24. Kern-Zdanowicz I. pCTX-M3-Structure, function, and evolution of a multi-resistance conjugative plasmid of a broad recipient range. Int J Mol Sci. 2021; 22 (9): 4606. doi: 10.3390/ijms22094606.

25. Chen W., Fang T., Zhou X., Zhang D., Shi X., Shi C. IncHI2 Plasmids Are Predominant in Antibiotic-Resistant Salmonella Isolates. Front Microbiol. 2016; 7: 1566. doi: 10.3389/fmicb.2016.01566.

26. Douard G., Praud K., Cloeckaert A., Doublet B. The Salmonella genomic island 1 is specifically mobilized in trans by the IncA/C multidrug resistance plasmid family. PLoS One. 2010; 5 (12): e15302. doi: 10.1371/journal.pone.0015302.

27. Poulin-Laprade D., Carraro N., Burrus V. The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids. Front Microbiol. 2015; 6: 837. doi: 10.3389/fmicb.2015.00837.

28. Fernandez-Alarcon C., Singer R.S., Johnson T.J. Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources. PLoS ONE. 2011; 6: e23415. doi: 10.1371/journal.pone.0023415.

29. Cao G., Allard M., Hoffmann M., Muruvanda T., Luo Y., Payne J., et al. Sequence analysis of IncA/C and IncI1 plasmids isolated from multidrug-resistant Salmonella newport using single-molecule real-time sequencing. Foodborne Pathog. Dis. 2018; 15: 361371. doi: 10.1089/fpd.2017.2385.

30. Carraro N., Matteau D., Luo P., Rodrigue S., Burrus V. The master activator of IncA/C conjugative plasmids stimulates genomic islands and multidrug resistance dissemination. PLoS Genet. 2014; 10 (10): e1004714. doi: 10.1371/journal.pgen.1004714.

31. García-Fernández A., Carattoli A. Plasmid double locus sequence typing for IncHI2 plasmids, a subtyping scheme for the characterization of IncHI2 plasmids carrying extended-spectrum beta-lactamase and quinolone resistance genes. J Antimicrob Chemother. 2010; 65 (6): 1155–1161. doi: 10.1093/jac/dkq101.

32. Nordmann P., Poirel L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J Antimicrob Chemother. 2005; 56 (3): 463–469. doi: 10.1093/jac/dki245.

33. Johnson T.J., Lang K.S. IncA/C plasmids: An emerging threat to human and animal health? Mob Genet Elements. 2012; 2 (1): 55–58. doi: 10.4161/mge.19626.

34. Leavitt A., Chmelnitsky I., Carmeli Y., Navon-Venezia S. Complete nucleotide sequence of KPC-3-encoding plasmid pKpQIL in the epidemic Klebsiella pneumoniae sequence type 258. Antimicrob Agents Chemother. 2010; 54 (10): 44934496. doi: 10.1128/AAC.00175-10.

35. Curiao T., Morosini M.I., Ruiz-Garbajosa P., Robustillo A., Baquero F., Coque T.M., Cantón R. Emergence of bla KPC-3-Tn4401a associated with a pKPN3/4-like plasmid within ST384 and ST388 Klebsiella pneumoniae clones in Spain. J Antimicrob Chemother. 2010; 65 (8): 16081614. doi: 10.1093/jac/dkq174.

36. Johnson T.J., Shepard S.M.,Rivet B., Danzeisen J.L.,Carattoli A. Comparative genomics and phylogeny of the IncI1 plasmids: a common plasmid type among porcine enterotoxigenic Escherichia coli. Plasmid. 2011 Sep; 66 (3): 14451. doi: 10.1016/j.plasmid.2011.07.003.

37. Szmolka A., Lestár B., Pászti J., Fekete P., Nagy B. Conjugative IncF and IncI1 plasmids with tet(A) and class 1 integron conferring multidrug resistance in F18(+) porcine enterotoxigenic E.coli. Acta Vet Hung. 2015 Dec; 63 (4): 42543. doi: 10.1556/004.2015.040.

38. Carattoli A., Seiffert S.N., Schwendener S., Perreten V., Endimiani A. Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PLoS One. 2015; 10 (5): e0123063. Published 2015 May 1. doi:10.1371/journal.pone.0123063.

39. Fernández-López R., Garcillán-Barcia M.P., Revilla C., Lázaro M., Vielva L., de la Cruz F. Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution. FEMS Microbiol Rev. 2006 Nov; 30 (6): 94266. doi: 10.1111/j.1574-6976.2006.00042.x.

40. Loftie-Eaton W., Rawlings D.E. Diversity, biology and evolution of IncQ-family plasmids. Plasmid. 2012; 67 (1): 1534. doi: 10.1016/j.plasmid.2011.10.001.

41. Rozwandowicz M., Brouwer M.S.M., Fischer J., Wagenaar J.A., Gonzalez-Zorn B., Guerra B., Mevius D.J., Hordijk J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother. 2018; 73 (5): 11211137. doi: 10.1093/jac/dkx488.

42. Jahantigh M., Samadi K., Dizaji R.E. et al. Antimicrobial resistance and prevalence of tetracycline resistance genes in Escherichia coli isolated from lesions of colibacillosis in broiler chickens in Sistan, Iran. BMC Vet Res 2020; 16: 267.

43. Muthuirulandi Sethuvel D.P., Anandan S., Devanga Ragupathi N.K., Gajendiran R., Kuroda M., Shibayama K., Veeraraghavan B. IncFII plasmid carrying antimicrobial resistance genes in Shigella flexneri: Vehicle for dissemination. J Glob Antimicrob Resist. 2019; 16: 215219. doi: 10.1016/j.jgar.2018.10.014.

44. Hooper D.C. Plasmids and genes contributing to high-level quinolone resistance in Escherichia coli. Int J Antimicrob Agents. 2020; 56 (1): 105987. doi: 10.1016/j.ijantimicag.2020.105987.

45. Couchoud C., Bertrand X., Valot B., Hocquet D. Deciphering the role of insertion sequences in the evolution of bacterial epidemic pathogens with panISa software. Microb Genom. 2020; 6 (6): e000356. doi: 10.1099/mgen.0.000356.

46. Sultan I., Rahman S., Jan A.T., Siddiqui M.T., Mondal A.H., Haq Q.M.R. Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front Microbiol. 2018; 9: 2066. doi: 10.3389/fmicb.2018.02066.

47. Sabbagh P., Rajabnia M., Maali A., Ferdosi-Shahandashti E. Integron and its role in antimicrobial resistance: a literature review on some bacterial pathogens. Iran J Basic Med Sci. 2021; 24 (2): 136142. doi: 10.22038/ijbms.2020.48905.

48. Akrami F., Rajabnia M., Pournajaf A. Resistance integrons; a mini review. Caspian J Intern Med. 2019; 10 (4): 370376. doi: 10.22088/cjim.10.4.370.

49. Cury J.,Jové T.,Touchon M.,Néron B.,Rocha E.P. Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res. 2016; 44 (10): 45394550. doi:10.1093/nar/gkw319.

50. He J., Li C., Cui P., Wang H. Detection of Tn7-like transposons and antibiotic resistance in enterobacterales from animals used for food production with identification of three novel transposons Tn6813, Tn6814, and Tn6765. Front Microbiol. 2020 Sep 4; 11: 2049. doi: 10.3389/fmicb.2020.02049.

51. Siguier P., Gourbeyre E., Varani A., Ton-Hoang B., Chandler M. Everyman's guide to bacterial insertion sequences. Microbiol Spectr. 2015; 3: MDNA3-0030-2014. doi: 10.1128/microbiolspec.MDNA3-0030-2014.

52. Vandecraen J., Chandler M., Aertsen A., Van Houdt R., Houdt R.V. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol. 2017; 43: 709730. doi: 10.1080/1040841X.2017.1303661.

53. Babakhani S., Oloomi M. Transposons: the agents of antibiotic resistance in bacteria. J Basic Microbiol. 2018; 58 (11): 905917. doi: 10.1002/jobm.201800204.

54. van Opijnen T., Camilli A. Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol. 2013; 11 (7): 43542. doi: 10.1038/nrmicro3033.

55. Cain A.K., Hall R.M. Evolution of IncHI2 plasmids via acquisition of transposons carrying antibiotic resistance determinants. J Antimicrob Chemother. 2012; 67: 11211127. doi: 10.1093/jac/dks004.

56. Marti E., Variatza E., Balcázar J.L. Bacteriophages as a reservoir of extended-spectrum β-lactamase and fluoroquinolone resistance genes in the environment. Clin Microbiol Infect. 2014; 20: 456–459. doi: 10.1111/1469-0691.12446.

57. Colavecchio A., Cadieux B., Lo A., Goodridge L.D. Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family — a review. Front Microbiol. 2017; 8: 1108. doi: 10.3389/fmicb.2017.01108.

58. Manohar P., Tamhankar A.J., Lundborg C.S., Nachimuthu R. Therapeutic characterization and efficacy of bacteriophage cocktails infecting Escherichia coli, Klebsiella pneumoniae, and Enterobacter species. Front Microbiol. 2019; 10: 574. doi: 10.3389/fmicb.2019.00574.

59. Shousha A., Awaiwanont N., Sofka D., Smulders F.J., Paulsen P., Szostak M.P. et al. Bacteriophages isolated from chicken meat and the horizontal transfer of antimicrobial resistance genes. Appl Environ Microbiol. 2015; 81: 4600–4606. doi: 10.1128/AEM.00872-15.

60. Feiner R., Argov T., Rabinovich L., Sigal N., Borovok I., Herskovits A.A. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol. 2015; 13: 641650. doi: 10.1038/nrmicro3527.

61. Pattenden T., Eagles C., Wahl L.M. Host life-history traits influence the distribution of prophages and the genes they carry. Philos Trans R Soc Lond B Biol Sci. 2022; 377 (1842): 20200465. doi: 10.1098/rstb.2020.0465.

62. Marinus M.G., Poteete A.R. High efficiency generalized transduction in Escherichia coli O157:H7. F1000Res. 2014; 2: 7. doi: 10.12688/f1000research.2-7.v1.

63. Treepong P., Guyeux C., Meunier A., Couchoud C., Hocquet D. et al. panISa: ab initio detection of insertion sequences in bacterial genomes from short read sequence data. Bioinformatics. 2018; 34: 37953800. doi: 10.1093/bioinformatics/bty479.

64. Scholtmeijer K., Wösten H.A., Springer J., Wessels J.G. Effect of introns and AT-rich sequences on expression of the bacterial hygromycin B resistance gene in the basidiomycete Schizophyllum commune. Appl Environ Microbiol. 2001; 67 (1): 481483. doi: 10.1128/AEM.67.1.481-483.2001.

65. Razavi M.,Kristiansson E.,Flach C.F.,Larsson D.G.J. The association between insertion sequences and antibiotic resistance genes. mSphere. 2020; 5 (5): e00418-20. doi: 10.1128/mSphere.00418-20.

66. Che Y., Yang Y., Xu X., Břinda K., Polz M.F., Hanage W.P., Zhang T. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc Natl Acad Sci USA. 2021 Feb 9; 118 (6): e2008731118. doi: 10.1073/pnas.2008731118.

67. Olliver A., Vallé M., Chaslus-Dancla E., Cloeckaert A. Overexpression of the multidrug efflux operon acrEF by insertional activation with IS1 or IS10 elements in Salmonella enterica serovar Typhimurium DT204 acrB mutants selected with fluoroquinolones. Antimicrob Agents Chemother. 2005; 49 (1): 289301. doi: 10.1128/AAC.49.1.289-301.2005.

68. Partridge S.R. Analysis of antibiotic resistance regions in gram-negative bacteria. FEMS Microbiol Rev. 2011; 35 (5): 82055. doi: 10.1111/j.1574-6976.2011.00277.x.

69. Sütterlin S., Bray J.E., Maiden M.C.J., Tano E. Distribution of class 1 integrons in historic and contemporary collections of human pathogenic Escherichia coli. PLoS One. 2020; 15 (6): e0233315. doi:10.1371/journal.pone.0233315.

70. Gillings M.R. Integrons: past, present, and future. Microbiol Mol Biol Rev. 2014; 78: 257277. doi: 10.1128/MMBR.00056-13

71. Cury J.,Jové T.,Touchon M.,Néron B.,Rocha E.P. Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res. 2016; 44: 45394350. doi: pmid:27130947.

72. Nair D., Venkitanarayanan K., Kollanoor Johny A. Antibiotic-resistant salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods. 2018; 7 (10): 167. doi:10.3390/foods7100167.

73. de Curraize C.,Siebor E.,Neuwirth C. Genomic islands related to Salmonella genomic island 1; integrative mobilisable elements in trmE mobilised in trans by A/C plasmids. Plasmid. 2021; 114: 102565. doi: 10.1016/j.plasmid.2021.102565.

74. McMillan E.A., Gupta S.K., Williams L.E., Jové T., Hiott L.M., Woodley T.A., Barrett J.B., Jackson C.R., Wasilenko J.L., Simmons M., Tillman G.E., McClelland M., Frye J.G. Antimicrobial resistance genes, cassettes, and plasmids present in salmonella enterica associated with united states food animals. Front Microbiol. 2019; 10: 832. doi: 10.3389/fmicb.2019.00832.

75. Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother. 2009; 53: 22272238. doi: 10.1128/Aac.01707-08.

76. Jordt H.,Stalder T., Kosterlitz O.,Ponciano J.M.,Top E.M.,Kerr B. Coevolution of host-plasmid pairs facilitates the emergence of novel multidrug resistance. Nat Ecol Evol. 2020; 4 (6): 863869. doi: 10.1038/s41559-020-1170-1.

77. von Wintersdorff C.J., Penders J., Van Niekerk J.M., Mills N.D., Majumder S., Van Alphen L.B. et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016; 7: 173. doi: 10.3389/fmicb.2016.00173.

78. Buckner M.M.C., Ciusa M.L., Piddock L.J.V. Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. FEMS Microbiol Rev. 2018; 42 (6): 781804. doi: 10.1093/femsre/fuy031.

79. Kim J.S., Cho D.H., Park M., Chung W.J., Shin D., Ko K.S., Kweon D.H. CRISPR/Cas9-Mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases. J Microbiol Biotechnol. 2016; 26 (2): 394401. doi: 10.4014/jmb.1508.08080.

80. Wu Y., Battalapalli D., Hakeem M.J., Selamneni V., Zhang P., Draz M.S., Ruan Z. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnology. 2021; 19 (1): 401. doi: 10.1186/s12951-021-01132-8.

81. Duan C., Cao H., Zhang L.H., Xu Z. Harnessing the CRISPR-Cas Systems to Combat Antimicrobial Resistance. Front Microbiol. 2021; 12: 716064. doi: 10.3389/fmicb.2021.


Рецензия

Для цитирования:


Андрюков Б.Г., Беседнова Н.Н., Запорожец Т.С. Мобильные генетические элементы прокариот и их роль в формировании резистентности к антибиотикам у патогенных бактерий. Антибиотики и Химиотерапия. 2022;67(1-2):62-74. https://doi.org/10.37489/0235-2990-2022-67-1-2-62-74

For citation:


Andryukov B.G., Besednova N.N., Zaporozhets T.S. Mobile Genetic Elements of Prokaryotes and Their Role in the Formation of Antibiotic Resistance in Pathogenic Bacteria. Antibiotics and Chemotherapy. 2022;67(1-2):62-74. (In Russ.) https://doi.org/10.37489/0235-2990-2022-67-1-2-62-74

Просмотров: 232


ISSN 0235-2990 (Print)