Evaluation of Antimicrobial Activity of a Pyrimidine Derivative Against Staphylococcus Aureus
https://doi.org/10.37489/0235-2990-2022-67-5-6-4-9
Abstract
The aim of this study was to evaluate the in vitro and in vivo antimicrobial activity of a new pyrimidine derivative against Staphylococcus aureus. The assessment of the antimicrobial activity of pyrimidine compound 3 3-(2-Phenyl-2- oxoethyl)quinazoline-4(3H)-one was performed in vitro using a test culture of the S. aureus strain isolated from patients’ sputum by serial dilutions in meat-peptone broth, followed by the formation of sequences with a concentration of pyrimidine derivative 128 mcg/ml; 64 mcg/ml; 32 mcg/ml; 16 mcg/ml; 8 mcg/ml; 4 mcg/ml; 2 mcg/ml; 1 mcg/ml. During the study, the minimum inhibitory concentration of 3-(2-Phenyl-2-oxoethyl)quinazoline-4(3H)-one against S. aureus was determined. The antimicrobial activity of the compound under examination was studied in vivo using a model of generalized staphylococcal infection. The infectious process was modeled via intraperitoneal administration of S. aureus at a dose of ×108 microbial bodies to 7-week-old mice. All laboratory mice were divided into 4 groups: control I — animals receiving an equivalent volume of water for injection; control II — animals infected with S. aureus; comparison group — a group of animals treated with the comparison drug ceftriaxone at a dose of 50 mg/kg; experimental group – animals treated with the studied compound at a dose of 1/10 of the molecular weight of 26 mg/ kg, for 7 days starting from the day of infection. The survival rate of mice during the experiment was evaluated. At the end of the experiment, blood, spleen, liver, and lung contamination indices were calculated. The study established the antibacterial activity of the pyrimidine derivative 3-(2-Phenyl-2-oxoethyl)quinazoline-4(3H)-one under in vitro conditions against S. aureus: the compound showed bacteriostatic activity in the dilution of 16 mcg/kg and bactericidal activity in dilution of 64 mcg/kg. The results of the assessment of antimicrobial activity in vivo showed that the studied compound contributes to the survival of laboratory animals, as well as to a decrease in the index of bacterial contamination of internal organs and blood in conditions of generalized staphylococcal infection, which indicates the ability to form antimicrobial immunity.
About the Authors
A. A. TSIBIZOVARussian Federation
Alexandra A. Tsibizova — Ph. D. in pharmaceutics
Astrakhan
A. L. YASINEVSKAYA
Russian Federation
Anna L. Yasenyavskaya — Ph.D. in medicine, Associate Professor
Astrakhan
I. N. TYURENKOV
Russian Federation
Ivan N. Tyurenkov — D. Sc. in medicine, Professor, Corresponding Member of the Russian Academy of Sciences
Volgograd
A. A. OZEROV
Russian Federation
Alexandr A. Ozerov — D. Sc. in chemistry, Professor
Volgograd
O. A. BASHKINA
Russian Federation
Olga A. Bashkina — D. Sc. in medicine, Professor
Astrakhan
M. A. SAMOTRUEVA
Russian Federation
Marina A. Samotrueva — D. Sc. in medicine, Professor
Astrakhan
References
1. Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H. et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018; 11: 1645. doi:10.2147/IDR.S173867.
2. Pavlenko N. V., Kozonova Z. G. Problemy i vozmozhnost' povysheniya effektivnosti antibiotikov. Tendentsii Razvitiya Nauki i Obrazovaniya. 2020; 68 (2): 63–66. https://doi.org/10.18411/lj-12-2020-68 (in Russian)
3. Mobarki N., Almerabi B., Hattan A. Antibiotic resistance crisis. Int J Med Dev Ctries. 2019; 40 (4): 561–564.
4. Kozlova N. S., Barantsevich N. E., Barantsevich E. P. Antibiotikorezistentnost' vozbuditeley gnoyno-septicheskikh infektsiy v mnogoprofil'nom statsionare. Problemy Meditsinskoy Mikologii. 2018; 20: 1. (in Russian).
5. Rafal'skiy V. V. Antibiotikorezistentnost' vozbuditeley neoslozhnennykh infektsiy mochevykh putey v Rossiyskoy Federatsii. Vestnik Urologii. 2018; 3: 50–56. https://doi.org/10.21886/2308-6424-2018-6-3-50-56 (in Russian)
6. Prostakishina Yu. M., Shangina O. A. Rasprostranennost' antibiotikorezistentnosti vozbuditeley nozokomial'nykh infektsiy v ORIT. Klinicheskaya Mikrobiologiya i Antimikrobnaya Khimioterapiya. 2019; 21 (S1): 51–52. (in Russian).
7. Cruz J. S., de Aguiar A. P. Overview of the Biological Activities of Pyrimido [4, 5-d] pyrimidines. Mini Revn Med Chem. 2021; 21 (15): 2138–2168. doi:10.2174/1389557521666210219160115.
8. Zarenezhad E., Farjam M., Iraji A. Synthesis and biological activity of pyrimidines-containing hybrids: Focusing on pharmacological application. J Mol Structure. 2021; 1230: 129833. doi:10.1016/J.MOLSTRUC.2020.129833.
9. Tolba M., El-Dean A., Ahmed M., Hassanien R., Sayed M., Zaki R. et al. Synthesis, reactions, and applications of pyrimidine derivatives. Current Chemistry Letters. 2022; 11 (1): 121–138. doi:10.5267/j.ccl.2021.008.002.
10. Rashid H., Martines M. A. U., Duarte A. P., Jorge J., Rasool S., Muhammad R. et al. Research developments in the syntheses, anti-inflammatory activities and structure–activity relationships of pyrimidines. RSC Adv. 2021; 11 (11): 6060–6098. doi:10.1039/D0RA10657G.
11. Verma V., Joshi C. P., Agarwal A., Soni S., Kataria U. A review on pharmacological aspects of pyrimidine derivatives. Journal of Drug Delivery and Therapeutics. 2020; 10 (5): 358–361. doi:10.22270/jddt.v10i5.4295.
12. Löffler M., Carrey E. A., Zameitat E. New perspectives on the roles of pyrimidines in the central nervous system. Nucleosides, Nucleotides Nucleic Acids. 2018; 37 (5): 290–306. doi:10.1080/15257770.2018.1453076.
13. Samotrueva M. A., Ozerov A. A., Starikova A. A., Gabitova N. M., Merezhkina D. V., Tsibizova A. A. i dr. Izuchenie antimikrobnoy aktivnosti novykh khinazolin-4(3n)-onov po otnosheniyu k Staphylococcus aureus i Streptococcus pneumoniae. Farmatsiya i Farmakologiya. 2021; 9 (4): 318–329. https://doi.org/10.19163/2307-9266-2021-9-4-318-329 (in Russian)
14. Tsibizova A. A., Ozerov A. A., Novikov M. S., Samotrueva M. A., Yasenyavskaya A. L., Tyurenkov I. N. Sintez i immunotropnaya aktivnost' novykh proizvodnykh khinazolina u myshey. Khimiko-Farmatsevticheskiy Zhurnal. 2020; 54 (10): 26–29. https://doi.org/10.30906/0023-1134-2020-54-10-26-29 (in Russian)
15. Abdellatif K. R., Bakr R. B. Pyrimidine and fused pyrimidine derivatives as promising protein kinase inhibitors for cancer treatment. Medicinal Chemistry Research. 2021; 30 (1): 31–49. doi:10.1007/s00044-020-02656-8.
16. Hussain M. M. M., Bharthi D. R., Revanasiddappa B. C., Kumar H. Synthesis and Antioxidnat activity of novel 2-Mercapto Pyrimidine Derivatives. Research Journal of Pharmacy and Technology. 2020; 13 (3): 1224–1226. doi:10.5958/0974-360X.2020.00225.5
17. Tyurenkov I.N., Tsibizova A.A., Samotrueva M.A., Ozerov A.A. Immunotropnye svoystva karbonil'nogo proizvodnogo khinazolina. Astrakhanskiy Meditsinskiy Zhurnal. 2017; 12 (2): 81–88 (in Russian)
18. Bulbul M. Z., Chowdhury T. S., Misbah M. M., Ferdous J., Dey S., Hasan I. et al. Synthesis of new series of pyrimidine nucleoside derivatives bearing the acyl moieties as potential antimicrobial agents. Pharmacia. 2021; 68: 23. doi:10.3897/PHARMACIA.68.E56543.
19. Zhuang J., Ma S. Recent Development of Pyrimidine‐Containing Antimicrobial Agents. ChemMedChem. 2020; 15 (20): 1875–1886. doi:10.1002/cmdc.202000378.
20. Kumar S., Deep A., Narasimhan B. A review on synthesis, anticancer and antiviral potentials of pyrimidine derivatives. Current Bioactive Compounds. 2019; 15 (3): 289–303. doi:10.2174/1573407214666180124160405.
21. Salmasi Zh. M., Kazimirskiy A. N., Antonova E. A., Poryadin G. V. Vliyanie preparatov mestnoy antimikrobnoy terapii na svoystva kletok vrozhdennogo i adaptivnogo immuniteta. Meditsinskiy sovet. 2019; 8: 76–82. https://doi.org/10.21518/2079-701X-2019-8-76-82 (in Russian)
22. Aljamali N. M., Alsabri I. K. A. Development of Trimethoprim Drug and Innovation of Sulfazane-Trimethoprim Derivatives as Anticancer Agents. Biomedical and Pharmacology Journal. 2020; 13 (2): 613–625. doi:10.13005/bpj/1925.
23. Wróbel A., Arciszewska K., Maliszewski D., Drozdowska D. Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. The Journal of antibiotics. 2020; 73 (1): 5–27. doi:10.1038/s41429-019-0240-6.
24. Aljamali N. M., Alsabri I. K. A. Development of trimethoprim drug and innovation of sulfazane-trimethoprim derivatives as anticancer agents. Biomedical and Pharmacology Journal. 2020; 13 (2): 613–625 doi:10.13005/bpj/1925.
25. Haseeb, A., Abourehab, M. A., Almalki, W. A., Almontashri, A. M., Bajawi, S. A., Aljoaid, A. M. et al. Trimethoprim-sulfamethoxazole (Bactrim) dose optimization in pneumocystis jirovecii pneumonia (PCP) management: a systematic review. International Journal of Environmental Research and Public Health. 2022; 19 (5): 2833.
Review
For citations:
TSIBIZOVA A.A., YASINEVSKAYA A.L., TYURENKOV I.N., OZEROV A.A., BASHKINA O.A., SAMOTRUEVA M.A. Evaluation of Antimicrobial Activity of a Pyrimidine Derivative Against Staphylococcus Aureus. Antibiot Khimioter = Antibiotics and Chemotherapy. 2022;67(5-6):4-9. (In Russ.) https://doi.org/10.37489/0235-2990-2022-67-5-6-4-9