Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Comparative Activity of Lipoglycopeptide Antibiotics Against Gram-Positive Bacteria

https://doi.org/10.37489/0235-2990-2022-67-9-10-18-24

Abstract

Lipoglycopeptide antibiotics are semi-synthetic derivatives of glycopeptides and are characterized by a pronounced bactericidal activity against gram-positive pathogens. The aim of the study was comparative assessment of the sensitivity of gram-positive clinical isolates to lipoglycopeptide antibiotics (telavancin, dalbavancin, oritavancin). The following isolates were included in the work: methicillin-resistant Staphylococcus aureus (MRSA, n=780), methicillin-resistant coagulase-negative Staphylococcus spp. (MRCoNS, n=163), and vancomycin-resistant Enterococcus faecium (VREf, n=93). Serial dilutions were used to assess sensitivity with the addition of 0.002% polysorbate 80 to the medium. Lipoglycopeptides showed more pronounced antibacterial activity against MRSA compared to vancomycin, teicoplanin, and daptomycin, and had a MIC₅₀/MIC₉₀ (µg/ml): for telavancin — 0.06 /0.125, for dalbavancin — 0.016/0.06, and for oritavancin — 0.06/0.125. A trend towards an increase in the MIC of lipoglycopeptides and daptomycin was established in MRSA with the MIC of 2 µg/ml for vancomycin, the proportion of which was 13%. For MRCoNS, MIC₅₀ and MIC₉₀ of lipoglycopeptides did not exceed 0.06 µg/ml and 0.125 µg/ml, respectively. Oritavancin showed strong activity against VREf at MIC range of 0.03 µg/ml to 0.5 µg/ml, and at MIC₉₀ of 0.25 µg/ml. Thus, lipoglycopeptide antibiotics are a plausible alternative to vancomycin and daptomycin; they are characterized by pronounced activity and can be used to treat severe forms of staphylococcal infections.

About the Authors

V. V. Gostev
Pediatric Research and Clinical Center for Infectious Diseases; North-Western State Medical University Named after I. I. Mechnikov
Russian Federation

Vladimir V. Gostev — Ph.D. in Biology

WOS Researcher. ID: P-1949-2016

Scopus Author ID: 55614534400 

9 Professora Popova st., St. Petersburg, 197022 



O. S. Sulian
Pediatric Research and Clinical Center for Infectious Diseases
Russian Federation

Ofeliia S. Sulian

WOS Researcher ID: AAB-3314-2021

Scopus Author ID: 57219423522 

Saint Petersburg



O. S. Kalinogorskaya
Pediatric Research and Clinical Center for Infectious Diseases
Russian Federation

Olga S. Kalinogorskaya — Ph.D. in Medicine

WOS Researcher ID: AAW-3832-2020

Scopus Author ID: 56525317800 

Saint Petersburg



L. N. Popenko
St. Petersburg I. I. Dzhanelidze Research Institute of Emergency Medicine
Russian Federation

Lyubov N. Popenko — Head of the Microbiological Laboratory

Scopus Author ID: 55949337200 

Saint Petersburg



A. N. Kruglov
Moscow Multidisciplinary Clinical Center «Kommunarka»
Russian Federation

Alexander N. Kruglov — Ph. D. in Biology, Head of the Laboratory of Clinical Microbiology, bacteriologist

Scopus Author ID: 23489202100

Moscow



S. A. Gordeeva
Clinical Infectious Diseases Hospital named after S.P. Botkin
Russian Federation

Svetlana A. Gordeeva — Head of the Centralized Bacteriological Laboratory

Scopus Author ID: 57201845051 

Saint Petersburg



E. V. Nesterova
City Skin and Venereal Diseases Dispensary
Russian Federation

Elena V. Nesterova — bacteriologist at the Clinical Diagnostic Laboratory 

Saint Petersburg



D. P. Gladin
St. Petersburg State Pediatric Medical University of the Ministry of Health of the Russian Federation
Russian Federation

Dmitrii P. Gladin — Ph. D. in Medicine, Associate Professor, Acting Head of the Department of Microbiology, Virology and Immunology

Scopus Author ID: 6603374770 

Saint Petersburg



N. N. Trophimova
City Skin and Venereal Diseases Dispensary
Russian Federation

Natalya N. Trofimova — bacteriologist at the Clinical Diagnostic Laboratory 

Saint Petersburg



P. S. Chulkova
Pediatric Research and Clinical Center for Infectious Diseases
Russian Federation

Polina S. Chulkova

WOS Researcher ID: AAB-3307-2021

Scopus Author ID: 57210585992 

Saint Petersburg



I. V. Ageevets
Pediatric Research and Clinical Center for Infectious Diseases
Russian Federation

Irina V. Ageevets — Ph. D. in Medicine

WOS Researcher ID: F-8698-2017

Scopus Author ID: 57189621346 

Saint Petersburg



V. A. Ageevets
Pediatric Research and Clinical Center for Infectious Diseases
Russian Federation

Vladimir A. Ageevets — Ph. D. in Biology

WOS Researcher ID: F-9282-2017

Scopus Author ID: 55949608900 

Saint Petersburg



T. V. Chernenkaya
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Tatyana V. Chernenkaya — Ph. D. in Medicine, Head of the Scientific Laboratory of Clinical Microbiology

Scopus Author ID: 7801648630 

Moscow



References

1. Blaskovich M. A. T., Hansford K. A., Butler M. S. et al. Developments in glycopeptide antibiotics. ACS Infect Dis. 2018; 4 (5): 715–735. doi: 10.1021/acsinfecdis.7b00258.

2. Smith J. R., Roberts K. D., Rybak M. J. Dalbavancin: A novel lipoglycopeptide antibiotic with extended activity against gram-positive infections. Infect Dis Ther. 2015; 4 (3): 245–258. doi: 10.1007/s40121-015-0077-7.

3. Karlowsky J. A., Nichol K., Zhanel G. G. Telavancin: mechanisms of action, in vitro activity, and mechanisms of resistance. Clin Infect Dis. 2015; 61: Suppl 2: S58-68. doi: 10.1093/cid/civ534.

4. Binda E., Marinelli F., Marcone G. L. Old and new glycopeptide antibiotics: action and resistance. Antibiotics (Basel). 2014; 3 (4): 572–594. doi: 10.3390/antibiotics3040572.

5. Brade K. D., Rybak J. M., Rybak M. J. Oritavancin: A new lipoglycopeptide antibiotic in the treatment of gram-positive infections. Infect Dis Ther. 2016; 5 (1): 1–15. doi: 10.1007/s40121-016-0103-4.

6. Scoble P. J., Reilly J., Tillotson G. S. Real-world use of oritavancin for the treatment of osteomyelitis. Drugs Real World Outcomes. 2020; 7: Suppl 1: 46–54. doi: 10.1007/s40801-020-00194-8.

7. Lampejo T. Dalbavancin and telavancin in the treatment of infective endocarditis: a literature review. Int J Antimicrob Agents. 2020; 56 (3): 106072. doi: 10.1016/j.ijantimicag.2020.106072.

8. Reilly J., Jacobs M. A., Friedman B. et al. Clinical experience with telavancin for the treatment of patients with bacteremia and endocarditis: realworld results from the Telavancin Observational Use Registry (TOURTM). Drugs Real World Outcomes. 2020; 7 (3): 179–189. doi: 10.1007/s40801-020-00191-x.

9. CLSI. Performance Standards for Antimicrobial Susceptibility Testing M100-Ed32. 2022.

10. Arhin F. F., Sarmiento I., Belley A. et al. Effect of polysorbate 80 on oritavancin binding to plastic surfaces: implications for susceptibility testing. Antimicrob Agents Chemother. 2008; 52 (5): 1597–1603. doi: 10.1128/AAC.01513-07.

11. Kavanagh A., Ramu S., Gong Y. et al. Effects of microplate type and broth additives on microdilution mic susceptibility assays. Antimicrob Agents Chemother. 2019; 63 (1). doi: 10.1128/AAC.01760-18.

12. Pfaller M. A., Sader H. S., Flamm R. K. et al. Oritavancin in vitro activity against gram-positive organisms from European and United States medical centers: results from the SENTRY Antimicrobial Surveillance Program for 2010-2014. Diagn Microbiol Infect Dis. 2018; 91 (2): 199–204. doi: 10.1016/j.diagmicrobio.2018.01.029.

13. Pfaller M. A., Flamm R. K., Castanheira M. et al. Dalbavancin in-vitro activity obtained against Gram-positive clinical isolates causing bone and joint infections in US and European hospitals (2011–2016). Int J Antimicrob Agents. 2018; 51 (4): 608–611. doi: 10.1016/j.ijantimicag.2017.12.011.

14. Duncan L. R., Sader H. S., Huband M. D. et al. Antimicrobial activity of telavancin tested in vitro against a global collection of gram-positive pathogens, including multidrug-resistant isolates (2015–2017). Microb Drug Resist. 2020; 26 (8): 934–943. doi: 10.1089/mdr.2019.0104.

15. Saravolatz L. D., Pawlak J. VISA-Daptomycin non-susceptible Staphylococcus aureus frequently demonstrate non-susceptibility to Telavancin. Diagn Microbiol Infect Dis. 2019; 93 (2): 159–161. doi: 10.1016/j.diagmicrobio.2018.09.003.

16. Werth B. J., Jain R., Hahn A. et al. Emergence of dalbavancin non-susceptible, vancomycin-intermediate Staphylococcus aureus (VISA) after treatment of MRSA central line-associated bloodstream infection with a dalbavancin— and vancomycin-containing regimen. Clin Microbiol Infect. 2018; 24 (4): 429 e1-429 e5. doi: 10.1016/j.cmi.2017.07.028.

17. Steele J. M., Seabury R. W., Hale C. M., Mogle B. T. Unsuccessful treatment of methicillin-resistant Staphylococcus aureus endocarditis with dalbavancin. J Clin Pharm Ther. 2018; 43 (1): 101–103. doi: 10.1111/jcpt.12580.

18. Riccobono E., Giani T., Baldi G. et al. Update on activity of dalbavancin and comparators against clinical isolates of Gram-positive pathogens from Europe and Russia (2017–2018), and on clonal distribution of MRSA. Int J Antimicrob Agents. 2022; 59 (2): 106503. doi: 10.1016/j.ijantimicag.2021.106503.

19. Kaushal R., Hassoun A. Successful treatment of methicillin-resistant Staphylococcus epidermidis prosthetic joint infection with telavancin. J Antimicrob Chemother. 2012; 67 (8): 2052-2053. doi: 10.1093/jac/dks165.

20. Bouza E., Valerio M., Soriano A. et al. Dalbavancin in the treatment of different gram-positive infections: a real-life experience. Int J Antimicrob Agents. 2018; 51 (4): 571–577. doi: 10.1016/j.ijantimicag.2017.11.008.

21. Bender J. K., Cattoir V., Hegstad K. et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist Updat. 2018; 40: 25–39. doi: 10.1016/j.drup.2018.10.002.

22. Li L., Higgs C., Turner A. M. et al. Daptomycin resistance occurs predominantly in vana-type vancomycin-resistant Enterococcus faecium in Australasia and Is associated with heterogeneous and novel mutations. Front Microbiol. 2021; 12: 749935. doi: 10.3389/fmicb.2021.749935.

23. Casapao A. M., Kullar R., Davis S. L. et al. Multicenter study of high-dose daptomycin for treatment of enterococcal infections. Antimicrob Agents Chemother. 2013; 57 (9): 4190–4196. doi: 10.1128/AAC.00526-13.

24. Johnson J. A., Feeney E. R., Kubiak D. W., Corey G. R. Prolonged use of oritavancin for vancomycin-resistant Enterococcus faecium prosthetic valve endocarditis. Open Forum Infect Dis. 2015; 2 (4): ofv156. doi: 10.1093/ofid/ofv156.

25. Belley A., Lalonde-Seguin D., Arhin F. F., Moeck G. Comparative pharmacodynamics of single-dose oritavancin and daily high-dose daptomycin regimens against vancomycin-resistant Enterococcus faecium isolates in an in vitro pharmacokinetic/pharmacodynamic model of infection. Antimicrob Agents Chemother. 2017; 61 (10): e01265-17. doi: 10.1128/AAC.01265-17.

26. Meyer K. A., Deraedt M. F., Harrington A. T. et al. Efficacy of oritavancin alone and in combination against vancomycin-susceptible and -resistant enterococci in an in-vivo Galleria mellonella survival model. Int J Antimicrob Agents. 2019; 54 (2): 197–201. doi: 10.1016/j.ijantimicag.2019.04.010.


Review

For citations:


Gostev V.V., Sulian O.S., Kalinogorskaya O.S., Popenko L.N., Kruglov A.N., Gordeeva S.A., Nesterova E.V., Gladin D.P., Trophimova N.N., Chulkova P.S., Ageevets I.V., Ageevets V.A., Chernenkaya T.V. Comparative Activity of Lipoglycopeptide Antibiotics Against Gram-Positive Bacteria. Antibiot Khimioter = Antibiotics and Chemotherapy. 2022;67(9-10):18-24. (In Russ.) https://doi.org/10.37489/0235-2990-2022-67-9-10-18-24

Views: 471


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)