Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Current Concepts of the Peptide Antibiotic Gramicidin S Biosynthesis

https://doi.org/10.37489/0235-2990-2025-70-5-6-64-71

EDN: KPGFFW

Abstract

   Gramicidin S is a cyclic decapeptide antibiotic produced by the soil bacterium Aneurinibacillus migulanus (formerly Bacillus brevis, Brevibacillus brevis), one of the first antibiotics ever discovered. In recent years, a revival of research interest was observed towards gramicidin S due to its unique properties: it does not cause the development of antibiotic resistance and has high efficacy against biofilms. This review examines current understanding of the structure, biological role, and antimicrobial mechanisms of gramicidin S. It also explores the biosynthetic pathways of gramicidin S, as well as the influence of cultivation parameters and nutrient medium components on its biosynthesis.

About the Authors

E. R. Mitina
MIREA — Russian technological university
Russian Federation

Ekaterina R. Mitina, Assistant

Institute of Fine Chemical Technologies; Department of Biotechnology and Industrial Pharmacy

Moscow


Competing Interests:

The authors declare that there is no conflict of interest



A. B. Pshenichnikova
MIREA — Russian technological university
Russian Federation

Anna B. Pshenichnikova, Ph. D. in Chemistry, Associate Professor

Institute of Fine Chemical Technologies; Department of Biotechnology and Industrial Pharmacy

Moscow


Competing Interests:

The authors declare that there is no conflict of interest



O. V. Efremenkova
Gause Institute of New Antibiotics
Russian Federation

Olga V. Efremenkova, Ph. D. in Biology, Head of the Sector

Resistance-Overcoming Natural Compounds Search Sector

Moscow


Competing Interests:

The authors declare that there is no conflict of interest



References

1. Dubos R. J., Cattaneo C. Studies on a bactericidal agent extracted from a soil bacillus. J Exp Med. 1939; 70 (3): 249–256. doi: 10.1084/jem.70.3.249.

2. Hotchkiss R. D., Dubos R. J. Bactericidal fractions from an aerobic sporulating bacillus. J Biol Chem. 1940; 136 (3): 803–804. doi: 10.1016/S0021-9258(18)73041-X.

3. Gause G. F., Brazhnikova M. G. Gramicidin S and its use in the treatment of infected wounds. Nature. 1944; 154 (3918): 703–703. doi: 10.1038/154703a0.

4. Pavithrra G., Rajasekaran R. Gramicidin peptide to combat antibiotic resistance : a review. Int J Pept Res Ther. 2020; 26 (1): 191–199. doi: 10.1007/s10989-019-09828-0

5. Guan Q., Huang S., Jin Y., Campagne R., Alezra V., Wan Y. Recent advances in the exploration of therapeutic analogues of gramicidin S, an old but still potent antimicrobial peptide. J Med Chem. 2019; 62 (17): 7603–7617. doi: 10.1021/acs.jmedchem.9b00156

6. Moravej H., Moravej Z., Yazdanparast M., Heiat M., Mirhosseini A., Moosazadeh Moghaddam M., Mirnejad R. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb Drug Resist. 2018; 24 (6): 747–767. doi: 10.1089/mdr.2017.0392.

7. Mogi T., Kita K. Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell Mol Life Sci. 2009; 66 (23): 3821–3826. doi: 10.1007/s00018-009-0129-9.

8. Guan Q., Huang S., Jin Y., Campagne R., Alezra V., Wan Y. Recent advances in the exploration of therapeutic analogues of gramicidin S, an old but still potent antimicrobial peptide. J Med Chem. 2019; 62 (17): 7603–7617. doi: 10.1021/acs.jmedchem.9b00156

9. Andryukov B. G., Besednova N. N., Zaporozhets T. S. To the 80<sup></sup> anniversary of gramicidin C сreation: from the study of the asymmetry of bacterial molecules to the discovery of antimicrobial peptides. Antibiot Chemother. 2022; 67 (3-4): 85–92. doi: 10.37489/0235-2990-2022-67-3-4-85-92

10. Kalyvas J. T., Wang Y., Toronjo-Urquiza L., Stachura D. L., Yu J., Horsley J. R., Abell A. D. A new gramicidin S analogue with potent antibacterial activity and negligible hemolytic toxicity. J Med Chem. 2024; 67 (13): 10774–10782. doi: 10.1021/acs.jmedchem.4c00261.

11. Wang Y., Kalyvas J. T., Evans J. D., Toronjo-Urquiza L., Horsley J. R., Abell A. D. Expanding the therapeutic window of gramicidin S towards a safe and effective systemic treatment of methicillin-resistant S. aureus infections. Eur J Med Chem. 2025; 283: 117128. doi: 10.1016/j.ejmech.2024.117128.

12. Kalyvas J. T., Wang Y., Romeo O., Horsley J. R., Abell A. D. Broad-spectrum gramicidin S derivatives with potent activity against multidrug-resistant gram-negative ESKAPE Pathogens. Antibiotics. 2025; 14 (5): 423. doi: 10.3390/antibiotics14050423.

13. Swierstra J., Kapoerchan V., Knijnenburg A., Van Belkum A., Overhand M. Structure, toxicity and antibiotic activity of gramicidin S and derivatives. Eur J Clin Microbiol Infect Dis. 2016; 35 (5): 763–769. doi: 10.1007/s10096-016-2595-y.

14. Berditsch M., Afonin S., Reuster J., Lux H., Schkolin K., Babii O., Radchenko D. S., Abdullah I., William N., Middel V., Strähle U., Nelson A., Valko K., Ulrich A. S. Supreme activity of gramicidin S against resistant, persistent and biofilm cells of staphylococci and enterococci. Sci Rep. 2019; 9 (1): 17938. doi: 10.1038/s41598-019-54212-z.

15. Stauss-Grabo M., Atiye S., Le T., Kretschmar M. Decade-long use of the antimicrobial peptide combination tyrothricin does not pose a major risk of acquired resistance with gram-positive bacteria and Candida spp. Pharm. 2014; 69 (11): 838–841. doi: 10.1691/ph.2014.4686.

16. Kaplan J. B. Antibiotic-induced biofilm formation. Int J Artif Organs. 2011; 34 (9): 737–751. doi: 10.5301/ijao.5000027.

17. Berditsch M., Jäger T., Strempel N., Schwartz T., Overhage J., Ulrich A. S. Synergistic effect of membrane-active peptides polymyxin b and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2015; 59 (9): 5288–5296. doi: 10.1128/aac.00682-15.

18. Berditsch M., Lux H., Babii O., Afonin S., Ulrich A. Therapeutic potential of gramicidin S in the treatment of root canal infections. Pharmaceuticals. 2016; 9 (3): 56. doi: 10.3390/ph9030056.

19. Dubkara H., Lal J., Saxena D., Akhir A., Maitra R., Chopra S., Reddy D. N. Discovery of a potent ornithine-modified gramicidin S analogue against drug-resistant Staphylococcus aureus and Enterococcus faecalis with minimal red blood cell toxicity. Eur J Med Chem. 2025; 292: 117654. doi: 10.1016/j.ejmech.2025.117654.

20. Riool M., Patrulea V., Monteiro C. Antimicrobial peptide–polymer conjugates. Pharmaceutics. 2022; 14 (10): 2171. doi: 10.3390/pharmaceutics14102171.

21. Pérez-Betancourt Y., Zaia R., Evangelista M. F., Ribeiro R. T., Roncoleta B. M., Mathiazzi B. I., Carmona-Ribeiro A. M. Characterization and differential cytotoxicity of gramicidin nanoparticles combined with cationic polymer or lipid bilayer. Pharmaceutics. 2022; 14 (10): 2053. doi: 10.3390/pharmaceutics14102053.

22. Li W., Separovic F., O’Brien-Simpson N. M., Wade J. D. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev. 2021; 50 (8): 4932–4973. doi: 10.1039/d0cs01026j.

23. Vashchenko O. V., Berest V. P., Sviechnikova L. V., Kutsevol N. V., Kasian N. A., Sofronov D. S., Skorokhod O. Modifying membranotropic action of antimicrobial peptide gramicidin S by star-like polyacrylamide and lipid composition of nanocontainers. Int J Mol Sci. 2024; 25 (16): 8691. doi: 10.3390/ijms25168691.

24. Antezana P. E., Municoy S., Bellino M. G., Martini M. F., Desimone M. F. Nanodelivery of the gramicidin peptide for enhancing antimicrobial activity. Eur J Lipid Sci Technol. 2021; 123 (8). doi: 10.1002/ejlt.202000389.

25. Marahiel M. A., Danders W., Krause M., Kleinkauf H. Biological role of gramicidin S in spore functions: studies on gramicidin-S-negative mutants of Bacillus brevis ATCC9999. Eur J Biochem. 1979; 99 (1): 49–55. doi: 10.1111/j.1432-1033.1979.tb13229.x.

26. Berditsch M., Trapp M., Afonin S., Weber C., Misiewicz J., Turkson J., Ulrich A. S. Antimicrobial peptide gramicidin S is accumulated in granules of producer cells for storage of bacterial phosphagens. Sci Rep. 2017; 7 (1): 44324. doi: 10.1038/srep44324.

27. Kondejewski L. H., Farmer S. W., Wishart D. S., Kay C. M., Hancock R. W., Hodges R. S. Modulation of structure and antibacterial and hemolytic activity by ring size in cyclic gramicidin S analogs. J Biol Chem. 1996; 271 (41): 25261–25268. doi: 10.1074/jbc.271.41.25261.

28. Mogi T., Kita K. Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell Mol Life Sci. 2009; 66 (23): 3821–3826. doi: 10.1007/s00018-009-0129-9.

29. Prenner E. J., Lewis R. N. A. H., McElhaney R. N. The interaction of the antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes. Biochim Biophys Acta BBA — Biomembr. 1999; 1462 (1–2): 201–221. doi: 10.1016/S0005-2736(99)00207-2.

30. Strøm M. B., Rekdal Ø., Svendsen J. S. Antimicrobial activity of short arginine‐ and tryptophan‐rich peptides. J Pept Sci. 2002; 8 (8): 431–437. doi: 10.1002/psc.398.

31. Kapreliants A. S., Nikiforov V. V., Miroshnikov A. I., Snezhkova L. G., Eremin V. A., Ostrovskiĭ D. N. Membranes of bacteria and mechanism of action of the antibiotic gramicidin S. Biokhimiia. 1977; 42 (2): 329–337. (in Russian)

32. Llamas-Saiz A. L., Grotenbreg G. M., Overhand M., Van Raaij M. J. Double-stranded helical twisted β-sheet channels in crystals of gramicidin S grown in the presence of trifluoroacetic and hydrochloric acids. Acta Crystallogr D Biol Crystallogr. 2007; 63 (3): 401–407. doi: 10.1107/S0907444906056435.

33. Afonin S., Dürr U. H. N., Wadhwani P., Salgado J., Ulrich A. S. Solid state NMR structure analysis of the antimicrobial peptide gramicidin S in lipid membranes: concentration-dependent re-alignment and self-assembly as a β-barrel. Top Curr Chem. 2008; 273: 139–154. doi: 10.1007/128_2007_20.

34. Ashrafuzzaman Md., Andersen O. S., McElhaney R. N. The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels. Biochim Biophys Acta BBA — Biomembr. 2008; 1778 (12): 2814–2822. doi: 10.1016/j.bbamem.2008.08.017.

35. Wenzel M., Rautenbach M., Vosloo J. A., Siersma T., Aisenbrey C. H. M., Zaitseva E., Laubscher W. E., Van Rensburg W., Behrends J. C., Bechinger B., Hamoen L. W. The multifaceted antibacterial mechanisms of the pioneering peptide antibiotics tyrocidine and gramicidin S. Haagsman H. P., Kline K. A., eds. mBio. 2018; 9 (5): e00802–18. doi: 10.1128/mbio.00802-18.

36. Krause M., Marahiel M. A. Organization of the biosynthesis genes for the peptide antibiotic gramicidin S. J Bacteriol. 1988; 170 (10): 4669–4674. doi: 10.1128/jb.170.10.4669-4674.1988.

37. Krätzschmar J., Krause M., Marahiel M. A. Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol. 1989; 171 (10): 5422–5429. doi: 10.1128/jb.171.10.5422-5429.1989.

38. Weissman K. J. The structural biology of biosynthetic megaenzymes. Nat Chem Biol. 2015; 11 (9): 660–670. doi: 10.1038/nchembio.1883.

39. Marahiel M. A., Essen L.-O. Chapter 13. Nonribosomal peptide synthetases in: methods in enzymology. Vol 458. Elsevier; 2009: 337–351. doi: 10.1016/S0076-6879 (09)04813-7.

40. Vater J., Stein T. H. Structure, function, and biosynthesis of gramicidin S synthetase. In: Comprehensive natural products chemistry. Elsevier; 1999: 319–352. doi: 10.1016/B978-0-08-091283-7.00128-4.

41. Hoyer K. M., Mahlert C., Marahiel M. A. The iterative gramicidin S thioesterase catalyzes peptide ligation and cyclization. Chem Biol. 2007; 14 (1): 13–22. doi: 10.1016/j.chembiol.2006.10.011.

42. Bonhomme S., Dessen A., Macheboeuf P. The inherent flexibility of type I non-ribosomal peptide synthetase multienzymes drives their catalytic activities. Open Biol. 2021; 11 (5): 200386. doi: 10.1098/rsob.200386.

43. Goto K., Fujita R., Kato Y., Asahara M., Yokota A. Reclassification of Brevibacillus brevis strains NCIMB 13288 and DSM 6472 ( = NRRL NRS-887) as Aneurinibacillus danicus sp. nov. and Brevibacillus limnophilus sp. nov. Int J Syst Evol Microbiol. 2004; 54 (2): 419–427. doi: 10.1099/ijs.0.02906-0.

44. Zharikova G. G., Koviazin N. V., Lukin A. A., Mitronova T. N., Savchenko G. V. On the problem of the dissociation of Bac. Brevis var. G.-B. Antibiotiki. 1963; 8: 327–332. (in Russian)

45. Zharikova G. G., Katrukha G. S., Silaev A. B., Radzhapov R. A. Obrazovanie antibiotikov polipeptidov razlichnymi variantami Вас. brevis var. G.-B. V sb. Biologiya Bacillus brevis var G.-B. Moscow: Izd-vo Moskovskogo Universiteta. 1968; 45–61. (in Russian)

46. Berditsch M., Afonin S., Ulrich A. S. The ability of Aneurinibacillus migulanus (Bacillus brevis) to produce the antibiotic gramicidin S is correlated with phenotype variation. Appl Environ Microbiol. 2007; 73 (20): 6620–6628. doi: 10.1128/AEM.00881-07.

47. Zharikova G. G., Makarova G. Y., Poglazova M. N., Zarubina A. P. Formirovanie i razvitie kolonii dissotsiirovannykh form Bacillus brevis var. G.-B. Mikrobiologiia. 1966; 35 (4): 647–650. (in Russian)

48. Matteo C. C., Glade M., Tanaka A., Piret J., Demain A. L. Microbiological studies on the formation of gramicidin S synthetases. Biotechnol Bioeng. 1975; 17 (1): 129–142. doi: 10.1002/bit.260170111.

49. Nesteruk V. V., Syrov K. K. Method for producing and purification of gramicidin S. European Patent EP3660141A1. 2020 Jun. 3.

50. Patent RUS № 2447143C2/ 10. 04. 2012. Byul. № 10. Derbyshev V. V., Klykov S. P., Kurakov V. V. Sposob glubinnogo kul'tivirovaniya Bacillus brevis dlya polucheniya gramitsidina S. https://patents.google.com/patent/RU2447143C2/ru. (in Russian)

51. Matteo C. C., Cooney C. L., Demain A. L. Production of gramicidin S synthetases by Bacillus brevis in continuous culture. J Gen Microbiol. 1976; 96 (2): 415–422. doi: 10.1099/00221287-96-2-415.

52. Berditsch M., Afonin S., Ulrich A. S. The ability of Aneurinibacillus migulanus (Bacillus brevis) to produce the antibiotic gramicidin S is correlated with phenotype variation. Appl Environ Microbiol. 2007; 73 (20): 6620–6628. doi: 10.1128/AEM.00881-07.

53. Winnick R. E., Lis H., Winnick T. Biosynthesis of gramicidin S I. General characteristics of the process in growing cultures of Bacillus brevis. Biochim Biophys Acta. 1961; 49 (3): 451–462. doi: 10.1016/0006-3002(61)90242-6.

54. Vandamme E. J., Leyman D., De Visscher P., De Buyser D., Vansteenkiste G. Effect of aeration and pH on gramicidin S production by Bacillus brevis. J Chem Technol Biotechnol. 1981; 31 (1): 247–257. doi: 10.1002/jctb.503310134.

55. Vandamme E. J., Demain A. L. Nutrition of Bacillus brevis ATCC 9999, the producer of gramicidin S. Antimicrob Agents Chemother. 1976; 10 (2): 265–273. doi: 10.1128/AAC.10.2.265.

56. Asatani M., Kurahashi K. Carbohydrate metabolism in Bacillus brevis ATCC 99991. J Biochem (Tokyo). 1977; 81 (4): 813–822. doi: 10.1093/oxfordjournals.jbchem.a131545.

57. Cause G. F., Brazhnikova M. G. Gramicidin S origin and mode of action. The Lancet. 1944; 244 (6327): 715–716. doi: 10.1016/S0140-6736(00)88377-4.

58. Vogt T. C. B., Schinzel S., Bechinger B. Biosynthesis of isotopically labeled gramicidins and tyrocidins by Bacillus brevis. J Biomol NMR. 2003; 26 (1): 1–11. doi: 10.1023/A:1023074911861.

59. Nimi O., Kubota H., Sugiyama M. Effect of arginine on gramicidin S biosynthesis by Bacillus brevis. J Antibiot (Tokyo). 1982; 35 (5): 615–621. doi: 10.7164/antibiotics.35.615.

60. Berditsch M., Afonin S., Steineker A., Orel N., Jakovkin I., Weber C., Ulrich A. S. Fermentation and cost-effective 13 C/15 N labeling of the nonribosomal peptide gramicidin S for nuclear magnetic resonance structure analysis. Parales R. E., ed. Appl Environ Microbiol. 2015; 81 (11): 3593–3603. doi: 10.1128/AEM.00229-15.

61. Demain A. L., Matteo C. C. Phenylalanine stimulation of gramicidin S formation. Antimicrob Agents Chemother. 1976; 9 (6): 1000–1003. doi: 10.1128/AAC.9.6.1000.

62. Udalova T. P., Fedorova R. I. The effect of various nutrient compounds upon gramicidin formation in Bacillus brevis var. G.-B. Mikrobiologiia. 1965; 34 (4): 631–635. (in Russian)

63. Korshunov V. V., Egorov N. S. A synthetic medium for the development of Bac. brevis var G.-B. and production of gramicidin S. Mikrobiologiia. 1962; 31: 515–519. (in Russian)


Review

For citations:


Mitina ER, Pshenichnikova AB, Efremenkova OV. Current Concepts of the Peptide Antibiotic Gramicidin S Biosynthesis. Antibiotiki i Khimioterapiya = Antibiotics and Chemotherapy. 2025;70(5-6):64-71. (In Russ.) https://doi.org/10.37489/0235-2990-2025-70-5-6-64-71. EDN: KPGFFW

Views: 41


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)