Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Analysis of the Antitumor Activity of Four New Phenylpyrazolotriazine Derivatives In Vitro in a Cytotoxicity and Cytostatic Study on Breast Cancer Cell Cultures

https://doi.org/10.37489/0235-2990-202570-7-8-19-27

EDN: XNQQIZ

Abstract

Background. The work presents the results of a study of new phenylpyrazolotriazine derivatives in order to establish their potential use as anticancer agents, including for chemotherapy of metastatic breast cancer. The relevance of the work is due to the widespread prevalence of oncological diseases and high breast cancer mortality, which dictate the need for the continuous development of new antitumor drugs.

The aim of the study. Screening of the antitumor potential of four new phenylpyrazolotriazine derivatives by testing their cytotoxic (CTA) and cytostatic (CSA) activity on breast cancer cell cultures.

Materials and methods. The base methods used in this study are the culturing of MCF-7, MDAMB231, BT474, and MCF-10a cells, as well as determining the CTA and CSA activity of four new phenylpyrazolotriazine derivatives at concentrations from 0.25 to 10.0 mM/L.

Results. For the MCF-7 culture, the maximum cell viability inhibition of the comparison drug temozolomide was equal to 2.44 and the concentration causing 50% cell death (IC₅₀) was 6.81 mM/L; for other cultures, CTA indicators were lower. Phenylpyrazolotriazine 3 demonstrated lower activity compared to temozolomide, IC₅₀ was not achieved in most cases. This derivative has been classified as a compound with low CTA and moderate CSA. Phenylpyrazolotriazines 1 and 4 showed higher activity than the comparison drug and were classified as compounds with low or moderate CTA and moderate CSA. Finally, phenylpyrazolotriazine 2 with a maximum cell viability inhibition of 3.70 and IC₅₀ of 1.66 mM/L showed the highest values of CTA and CSA.

Conclusion. According to the results of the in vitro study, four new phenylpyrazolotriazine derivatives can be evaluated in ascending order of the CTA and CSA combination: phenylpyrazolotriazine 3 ˂ temozolomide ˂ phenylpyrazolotriazines 1 and 4 ˂ phenylpyrazolotriazine 2. Thus, 3-(3'-Phenyl-4'methoxycarbonyl-isoxazolyl)-7-(p-tolyl)-pyrazolo[5,1-c][1,2,4]triazine (phenylpyrazolotriazine 2) is the undisputed leader in the tested series of new imidazotriazine derivatives and is recommended for further preclinical trials.

About the Authors

Ah. H. Al-Humairi
Volgograd State Medical University; National Research Tomsk State University
Russian Federation

Ahmed H. Al-Humairi — Lecturer at the Department of Disaster Medicine, Institute of Public Health, VSMU; National Research Tomsk State University of the Ministry of Science and Higher Education of the RF.

Volgograd


Competing Interests:

The authors have no conflict of interest to declare



V. V. Novochadov
Volgograd State University
Russian Federation

Valeriy V. Novochadov — D. Sc. in Medicine, Professor at the Department of Biology and Bioengineering, Institute of Natural Sciences.

Volgograd


Competing Interests:

The authors have no conflict of interest to declare



References

1. Caswell-Jin J. L., Sun L. P., Munoz D. et al. Analysis of Breast Cancer Mortality in the US-1975 to 2019. JAMA. 2024; 331 (3): 233–241. doi: 10.1001/jama.2023.25881.

2. Sung H., Ferlay J., Siegel R. L. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021; 71: 209–249. doi: 10.3322/caac.21660.

3. Wilkinson L., Gathani T. Understanding breast cancer as a global health concern. British Journal of Radiology. 2022; 95: 20211033. doi: https://doi.org/10.1259/bjr.20211033.

4. Maugeri S., Sibbitts J., Privitera A. et al. The anti-cancer activity of the naturally occurring dipeptide carnosine: Potential for breast cancer. Cells. 2023; 12 (22): 2592. doi: 10.3390/cells12222592.

5. Delahousse J., Molina L., Paci A. Cyclophosphamide and analogues; a matter of dose and schedule for dual anticancer activities. Cancer Lett. 2024; 598: 217119. doi: 10.1016/j.canlet.2024.217119.

6. Saito Y., Takekuma Y., Takahashi M. et al. Association of oral mucositis induced by anthracycline-cyclophosphamide and subsequent docetaxel treatment for perioperative breast cancer. Support Care Cancer. 2024; 32 (8): 513. doi: 10.1007/s00520-024-08733-7.

7. Roy M., Fowler A. M., Ulaner G. A., Mahajan A. Molecular classification of breast cancer. PET Clinics. 2023; 18 (4): 441–458. doi: 10.1016/j.cpet.2023.04.002.

8. Zhang Y., Chen F., Balic M., Creighton C. J. An essential gene signature of breast cancer metastasis reveals targetable pathways. Breast Cancer Res. 2024; 26 (1): 98. doi: 10.1186/s13058-024-01855-0.

9. Rositch A. F., Unger-Saldaña K., DeBoer R. J. et al. The role of dissemination and implementation science in global breast cancer control programs: Frameworks, methods, and examples. Cancer. 2020; 126: 2394–2404. doi: 10.1002/cncr.32877.

10. Cao J., Zhang M., Wang B. et al. Chemoresistance and metastasis in breast cancer molecular mechanisms and novel clinical strategies. Frontiers in Oncology. 2021; 11: 658552. doi: 10.3389/fonc.2021.658552

11. Will M., Liang J., Metcalfe C., Chandarlapaty S. Therapeutic resistance to anti-oestrogen therapy in breast cancer. Nature Reviews Cancer. 2023; 23 (10): 673–685. doi: 10.1038/s41568-023-00604-3.

12. Moody C., Wheelhouse R. The medicinal chemistry of imidazotetrazine prodrugs. Pharmaceuticals (Basel). 2014; 7: 797–838. doi: 10.3390/ph7070797.

13. Zhu W., Zhang F., Wang M. et al. Temozolomide alleviates breast carcinoma via the inhibition of EGFR/ERK/ MMP-1 pathway with induction of apoptotic events. Acta Cir Bras. 2024 May 24; 39: e391624. doi: 10.1590/acb391624.

14. Kitaeva K. V., Rizvanov A. A., Solov'eva V. V. Sovremennye metody doklinicheskogo skrininga protivoopukholevykh preparatov s primeneniem test-sistem na osnove kul'tur kletok. Uchenye zapiski Kazanskogo universiteta. Seriya Estestvennye nauki. 2021; 163 (2): 155–176. doi: https://doi.org/10.26907/2542-064X.2021.2.155-176. (in Russian)

15. Zhang R., Jiang Q., Zhuang Z. et al. A bibliometric analysis of drug resistance in immunotherapy for breast cancer: trends, themes, and research focus. Front Immunol. 2024; 15: 1452303. doi: 10.3389/fimmu.2024.1452303.

16. Khumairi A. Kh., Speranskij D. L., Sadchikova E. V. Sintez i tsitotoksicheskaya aktivnost' novykh proizvodnykh azolotriazina pri izuchenii na kletochnykh kul'turakh. Khimiko-Farmatsevticheskij Zhurnal. 2022; 56 (6): 17–22. doi: https://doi.org/10.30906/0023-1134-2022-566-17-22. (in Russian)

17. Al-Humairi A. H., Sitnikova S. E., Novochadov V. V. Cytotoxic and cytostatic activity of five new imidazotetrazine derivatives on breast cancer cell cultures MDAMB231, BT474, and MCF-7. Research Results in Pharmacology. 2024; 10 (3): 17–26. doi: https://doi.org/10.18413/rrpharmacology.10.479

18. Şeker Karatoprak G., Dumlupınar B., Celep E. et al. A comprehensive review on the potential of coumarin and related derivatives as multitarget therapeutic agents in the management of gynecological cancers. Front Pharmacol. 2024; 15: 1423480. doi: 10.3389/fphar.2024.1423480.

19. Kumar S., Arora A., Sapra S. et al. Recent advances in the synthesis and utility of thiazoline and its derivatives. RSC Advances. 2024; 14 (2): 902–953. doi: 10.1039/d3ra06444a20.

20. Villa-Reyna A. L., Perez-Velazquez M., González-Félix M. L. et al. The structure-antiproliferative activity relationship of pyridine derivatives. Int J Mol Sci. 2024; 25 (14): 7640. doi: 10.3390/ijms25147640.

21. Sadchikova E. V., Mokrushin V. S. Interaction of 3,8-disubstituted imidazo[5,1-c][1,2,4]triazines with nucleophiles. Chemistry of Heterocyclic Compounds. 2014; 50 (7): 1014–1020. doi: https://doi.org/10.1007/s10593014-1557-5.

22. Alexeeva D. L., Sadchikova E. V., Volkova N. N., et al. Reactivity of 3-substituted pyrazole-5-diazonium salts towards 3-azolyl enamines. Synthesis of novel 3-azolylpyrazolo[5,1-c][1,2,4]triazines. Archive for Organic Chemistry. 2016; IV: 114–129. doi: https://doi.org/10.3998/ark.5550190.p009.571.

23. Witt B. L., Tollefsbol T. O. Molecular, cellular, and technical aspects of breast cancer cell lines as a foundational tool in cancer research. Life (Basel). 2023; 13 (12): 2311. doi: 10.3390/life13122311.

24. Stockert J. C., Horobin R. W., Colombo L. L., Blázquez-Castro A. Tetrazolium salts and formazan products in cell biology: viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 2018; 120: 159–167. doi: 10.1016/j.acthis.2018.02.005.

25. Jezierzański M., Nafalska N., Stopyra M. et al. Temozolomide (TMZ) in the treatment of glioblastoma multiforme — a literature review and clinical outcomes. Curr Oncol. 2024; 31 (7): 3994–4002. doi: 10.3390/curroncol31070296.

26. Zhu S., Wu Y., Song B. et al. Recent advances in targeted strategies for triple-negative breast cancer. J Hematol Oncol. 2023; 16 (1): 100. doi: 10.1186/s13045-023-01497-3.

27. Masci D., Naro C., Puxeddu M. et al. Recent advances in drug discovery for triple-negative breast cancer treatment. Molecules. 2023; 28 (22): 7513. doi: 10.3390/molecules28227513.

28. Andrés C. M. C., Pérez de la Lastra J. M., Munguira E. B. et al. Dual-action therapeutics: DNA alkylation and antimicrobial peptides for cancer therapy. Cancers (Basel). 2024; 16 (18): 3123. doi: 10.3390/cancers16183123.

29. Peng Y., Pei H. DNA alkylation lesion repair: outcomes and implications in cancer chemotherapy. J Zhejiang Univ Sci B. 2021; 22 (1): 47–62. doi: 10.1631/jzus.B2000344.

30. Zhukova L. G., Andreeva I. I., Zavalishina L. E. et al. Breast cancer. Journal of Modern Oncology. 2021; 23: 5–40. doi: https://doi.org/10.26442/18151434.2021.1.200823.


Review

For citations:


Al-Humairi AH, Novochadov VV. Analysis of the Antitumor Activity of Four New Phenylpyrazolotriazine Derivatives In Vitro in a Cytotoxicity and Cytostatic Study on Breast Cancer Cell Cultures. Antibiotiki i Khimioterapiya = Antibiotics and Chemotherapy. 2025;70(7-8):19-27. (In Russ.) https://doi.org/10.37489/0235-2990-202570-7-8-19-27. EDN: XNQQIZ

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)