Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Diagnosis of Hospital-Acquired Pneumonia

https://doi.org/10.37489/0235-2990-2025-70-7-8-47-67

EDN: XBHHXB

Abstract

Relevance. Hospital-acquired pneumonia (HAP), particularly ventilator-associated pneumonia (VAP), remains one of the leading infectious complications in intensive care units in the context of increasing antimicrobial resistance and is associated with high mortality rates. The aim of the study was to present current approaches to the diagnosis of HAP with emphasis on clinical, laboratory, radiological, and ultrasound methods, as well as integrated scoring systems and rapid diagnostic tests.

Methods. The study analyzes Russian and international clinical guidelines, original studies, and systematic reviews published between 1991 and 2025, focusing on the epidemiology, diagnosis, and differential diagnosis of HAP. Special attention was given to imaging methods (chest X-ray, computed tomography, lung ultrasound), biomarkers, and molecular technologies for rapid pathogen identification.

Results. HAP diagnosis is based on a combination of clinical and laboratory findings and imaging methods, but their sensitivity and specificity remain limited. The CPIS score is still the most widely used, yet it lacks sufficient accuracy. New integrated scores (CEPPIS, VPLUS) and ultrasound-based protocols improve diagnostic reliability, while molecular rapid tests enable early detection of pathogens, their resistance mechanisms, and timely initiation of adequate etiotropic antibiotic therapy.

Conclusion. Improving diagnostic accuracy of HAP is possible through integration of clinical data, instrumental methods, and modern rapid tests. Lung ultrasound combined with biomarkers and molecular techniques represents a promising direction for a personalized approach to disease management.

About the Authors

D. N. Protsenko
Moscow Multidisciplinary Clinical Center «Kommunarka»; Pirogov Russian National Research Medical University
Russian Federation

Denis N. Protsenko — D. Sc. in Medicine, Director, Moscow Multidisciplinary Clinical Center «Kommunarka» of the Moscow Healthcare Department; Head of the Department of Anesthesiology and Resuscitation, Institute of Continuous Education and Professional Development, Pirogov RNRMU.

Moscow


Competing Interests:

none



B. Z. Belotserkovskiy
Moscow Multidisciplinary Clinical Center «Kommunarka»; Pirogov Russian National Research Medical University
Russian Federation

Boris Z. Belotserkovskiy — Ph. D. in Medicine, Associate Professor, Department of Anesthesiology and Resuscitation, Institute of Continuous Education and Professional Development, Pirogov RNRMU; Head of the Intensive Care Unit No. 5, Anesthesiologist-Resuscitator, Moscow Multidisciplinary Clinical Center «Kommunarka» of the Moscow Healthcare Department.

Moscow


Competing Interests:

none



M. I. Matyash
Moscow Multidisciplinary Clinical Center «Kommunarka»
Russian Federation

Maksim I. Matyash — Anesthesiologist-Resuscitator.

Moscow


Competing Interests:

none



A. N. Kruglov
Moscow Multidisciplinary Clinical Center «Kommunarka»
Russian Federation

Alexander N. Kruglov — Head of the Clinical Microbiology Laboratory, Bacteriologist, Moscow Multidisciplinary Clinical Center «Kommunarka» of the Moscow Healthcare Department.

Moscow


Competing Interests:

none



A. O. Bykov
Moscow Multidisciplinary Clinical Center «Kommunarka»; Pirogov Russian National Research Medical University
Russian Federation

Andrey O. Bykov — Anesthesiologist-Resuscitator, Moscow Multidisciplinary Clinical Center «Kommunarka» of the Moscow Healthcare Department; Assistant Professor, Department of Anesthesiology and Resuscitation, Faculty of Continuing Professional Education, Institute of Continuous Education and Professional Development, N. I. Pirogov RNRMU.

Moscow


Competing Interests:

none



E. M. Shifman
Pirogov Russian National Research Medical University; Moscow Regional Clinical Research Institute named after M. F. Vladimirsky (MONIKI)
Russian Federation

Efim M. Shifman — Professor, Department of Anesthesiology and Resuscitation, Faculty of Continuing Professional Education, Institute of Continuous Education and Professional Development, Pirogov RNRMU; Professor, Department of Anesthesiology and Resuscitation, Faculty of Advanced Medical Studies, Moscow Regional Clinical Research Institute named after M. F. Vladimirsky (MONIKI).

Moscow


Competing Interests:

none



References

1. Rachina S. A., Sinopalnikov A. I. Lower respiratory tract infections. In: Moiseev V. S., Kobalava Zh. D., Maev I. V. et al. (ed.). Fundamentals of Internal Medicine. 2 ed., rev. and enl. Moscow: LLC «MIA»; 2020; 1: 145–169. (in Russian)

2. Nosokomialnaya pnevmoniya u vzroslykh: Rossiiskie natsional’nye rekomendatsii. B. R. Gelfand (ed.), D. N. Protsenko, B. Z. Belotserkovskiy (resp. eds.). 2nd ed., rev. and enl. Moscow: Meditsinskoe Informatsionnoe Agentstvo; 2016; 176. (in Russian)

3. Dallas J., Skrupky L., Abebe N., Boyle W. A. 3rd, Kollef M. H. Ventilatorassociated tracheobronchitis in a mixed surgical and medical ICU population. Chest. 2011; 139 (3): 513–518. doi: 10.1378/chest.10-1336.

4. Niederman M. S. Hospital-acquired pneumonia, health care-associated pneumonia, ventilator-associated pneumonia, and ventilator-associated tracheobronchitis: definitions and challenges in trial design. Clin Infect Dis. 2010; 51 Suppl 1: S12-S17. doi: 10.1086/653035.

5. Kuzovlev A. N., Shabanov A. K., Grechko A. V. On the diagnosis and treatment of nosocomial tracheobronchitis in intensive care medicine. Annals of Critical Care. 2018; (1): 43–47. doi: https://doi.org/10.21320/ 1818-474X-2018-1-43-47. (in Russian)

6. Bloos F., Marshall J. C., Dellinger R. P., Vincent J. L., Gutierrez G., Rivers E. et al. Multinational, observational study of procalcitonin in ICU patients with pneumonia requiring mechanical ventilation: a multicenter observational study. Crit Care. 2011; 15 (2): R88. doi: 10.1186/cc10087.

7. Rodríguez-Villodres Á., Martín-Gandul C., Peñalva G., Guisado-Gil A. B., Crespo-Rivas J. C., Pachón-Ibáñez M. E. et al. Prevalence and risk factors for multidrug-resistant organisms colonization in long-term care facilities around the world: a review. Antibiotics (Basel). 2021; 10 (6): 680. doi: 10.3390/antibiotics10060680.

8. Klyasova G. A., Korobova A. G., Frolova I. N., Okhmat V. A., Kulikov S. M., Parovichnikova E. N. et al. Detection of extended-spectrum β-lactamase producing Enterobacteriaceae (ESBL-E) among patients with acute myeloid leukemia and lymphoma upon admission to hospital. Russian Journal of Hematology and Transfusiology. 2016; 61 (1): 25–32. doi: https://doi.org/10.18821/0234-5730-2016-61-1-25-32. (in Russian)

9. Hu Y., Qing Y., Chen J., Liu C., Lu J., Wang Q. et al. Prevalence, risk factors, and molecular epidemiology of intestinal carbapenem-resistant Pseudomonas aeruginosa. Microbiol Spectr. 2021; 9 (3): e0134421. doi: 10.1128/Spectrum.01344-21

10. Bar Ilan M., Kjerulf A. Who should be screened for carbapenemaseproducing Enterobacterales and when? A systematic review. J Hosp Infect. 2023; 142: 74–87. doi: 10.1016/j.jhin.2023.09.018.

11. Tian F., Li Y., Wang Y., Yu B., Song J., Ning Q. et al. Risk factors and molecular epidemiology of fecal carriage of carbapenem resistant Enterobacteriaceae in patients with liver disease. Ann Clin Microbiol Antimicrob. 2023; 22 (1): 10. doi: 10.1186/s12941-023-00560-8.

12. Ni O. G., Belotserkovskiy B. Z., Kruglov A. N., Matyash M. I., Bykov A. O., Yakovlev S. V. et al. Prevalence and risk factors for colonization with carbapenem-resistant microorganisms in patients admitted to a multidisciplinary hospital. Epidemiology and Vaccinal Prevention. 2024; 23 (6): 83–103. doi: 10.31631/2073-3046-2024-23-6-83-103. (in Russian)

13. Yakovlev S. V., Suvorova M. P., Beloborodov V. B., Basin E. E., Eliseeva E. V., Kovelenov S. V., Porthyagina U. S., Rog A. A., Rudnov V. A., Barkanova O. N. Multicentre study of the prevalence and clinical value of hospital-acquired infections in emergency hospitals of Russia: ERGINI study. Antibiot Khimioter = Antibiotics and Chemotherapy. 2016; 61 (5–6): 32–42. (in Russian)

14. O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Rossiiskoi Federatsii v 2024 godu: State report. Moscow: Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor); 2025; 424. (in Russian)

15. Jethwa S. Diagnosis and management of hospital-acquired pneumonia in older adults. Pharmaceutical Journal. January 2018. doi: https://doi.org/10.1211/pj.2018.20204336.

16. Koulenti D., Zhang Y., Fragkou P. C. Nosocomial pneumonia diagnosis revisited. Curr Opin Crit Care. 2020; 26 (5): 442–449. doi: 10.1097/MCC.0000000000000756.

17. Papazian L., Klompas M., Luyt C. E. Ventilator-associated pneumonia in adults: a narrative review. Intensive Care Med. 2020; 46 (5): 888–906. doi: 10.1007/s00134-020-05980-0

18. Koulenti D., Tsigou E., Rello J. Nosocomial pneumonia in 27 ICUs in Europe: perspectives from the EU-VAP/CAP study. Eur J Clin Microbiol Infect Dis. 2017; 36 (11): 1999–2006. doi: 10.1007/s10096-016-2703-z.

19. Stoclin A., Rotolo F., Hicheri Y. et al. Ventilator-associated pneumonia and bloodstream infections in intensive care unit cancer patients: a retrospective 12-year study on 3388 prospectively monitored patients. Support Care Cancer. 2020; 28 (1): 193–200. doi: 10.1007/s00520-01904800-6.

20. Vincent J. L., Bihari D. J., Suter P. M. et al. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European prevalence of infection in intensive care (epic) study. EPIC International Advisory Committee. JAMA. 1995; 274 (8): 639–644.

21. Rosenthal V. D., Maki D. G., Salomao R. et al. Device-associated nosocomial infections in 55 intensive care units of 8 developing countries. Ann Intern Med. 2006; 145 (8): 582–591. doi: 10.7326/0003-4819-1458-200610170-00007.

22. Raoofi S., Pashazadeh Kan F., Rafiei S. et al. Global prevalence of nosocomial infection: a systematic review and meta-analysis. PLoS One. 2023; 18 (1): e0274248. doi: 10.1371/journal.pone.0274248.

23. Klompas M., Kleinman K., Murphy M. V. Descriptive epidemiology and attributable morbidity of ventilator-associated events. Infect Control Hosp Epidemiol. 2014; 35 (5): 502–510. doi: 10.1086/675834.

24. Richards M. J., Edwards J. R., Culver D. H., Gaynes R. P. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol. 2000; 21 (8): 510–515. doi: 10.1086/501795.

25. Hunter J. D. Ventilator associated pneumonia. BMJ. 2012; 344: e3325. doi: 10.1136/bmj.e3325.

26. Koulenti D., Lisboa T., Brun-Buisson C. et al. Spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units. Crit Care Med. 2009; 37 (8): 2360–2368. doi: 10.1097/CCM.0b013e3181a037ac.

27. Gelfand B. R., Belotserkovskiy B. Z., Milyukova I. A., Gelfand E. B. Epidemiologiya i nozologicheskaya struktura nozokomial’nykh infektsii v otdelenii reanimatsii i intensivnoi terapii mnogoprofil’nogo statsionara. Infektsii v Khirurgii. 2014; 4: 24–36. (in Russian)

28. Kollef M. H., Hamilton C. W., Ernst F. R. Economic impact of ventilator-associated pneumonia in a large matched cohort. Infect Control Hosp Epidemiol. 2012; 33 (3): 250–256. doi: 10.1086/664049.

29. Masterton R. G., Galloway A., French G. et al. Guidelines for the management of hospital-acquired pneumonia in the UK: report of the working party on hospital-acquired pneumonia of the British Society for Antimicrobial Chemotherapy. J Antimicrob Chemother. 2008; 62 (1): 5–34. doi: 10.1093/jac/dkn162.

30. Melsen W. G., Rovers M. M., Groenwold R. H. et al. Attributable mortality of ventilator-associated pneumonia: a meta-analysis of individual patient data from randomised prevention studies. Lancet Infect Dis. 2013; 13 (8): 665–671. doi: 10.1016/S1473-3099(13)70081-1.

31. Iregui M., Ward S., Sherman G., Fraser V. J., Kollef M. H. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest. 2002; 122 (1): 262–268. doi: 10.1378/chest.122.1.262.

32. Kalanuria A. A., Ziai W., Mirski M. Ventilator-associated pneumonia in the ICU. Crit Care. 2014; 18 (2): 208. doi: 10.1186/cc13775.

33. Fernando S. M., Tran A., Cheng W. et al. Diagnosis of ventilatorassociated pneumonia in critically ill adult patients-a systematic review and meta-analysis. Intensive Care Med. 2020; 46 (6): 1170–1179. doi: 10.1007/s00134-020-06036-z.

34. Horan T. C., Andrus M., Dudeck M. A. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008; 36 (5): 309–332. doi: 10.1016/j.ajic.2008.03.002.

35. Tejerina E., Esteban A., Fernández-Segoviano P. et al. Accuracy of clinical definitions of ventilator-associated pneumonia: comparison with autopsy findings. J Crit Care. 2010; 25 (1): 62–68. doi: 10.1016/j.jcrc.2009.05.008.

36. Ferreira-Coimbra J., Ardanuy C., Diaz E. et al. Ventilator-associated pneumonia diagnosis: a prioritization exercise based on multi-criteria decision analysis. Eur J Clin Microbiol Infect Dis. 2020; 39 (2): 281–286. doi: 10.1007/s10096-019-03720-x.

37. Agarwal P., Wielandner A. Nosokomiale pneumonie aus radiologischer sicht. Der Radiologe. 2016; 57 (1): 13–21. (in German) doi: 10.1007/s00117016-0191-x.

38. Goodman L. R. Felson’s principles of chest roentgenology: a programmed text. 5th ed. Amsterdam: Elsevier; 2020.

39. Gruden J. F., Huang L., Turner J. et al. High-resolution CT in the evaluation of clinically suspected Pneumocystis carinii pneumonia in AIDS patients with normal, equivocal, or nonspecific radiographic findings. AJR Am J Roentgenol. 1997; 169 (4): 967–975. doi: 10.2214/ajr.169.4.9308446.

40. Franquet T. Imaging of pneumonia: trends and algorithms. Eur Respir J. 2001; 18 (1): 196–208. doi: 10.1183/09031936.01.00213501.

41. Wunderink R. G., Woldenberg L. S., Zeiss J., Day C. M., Ciemins J., Lacher D. A. The radiologic diagnosis of autopsy-proven ventilatorassociated pneumonia. Chest. 1992; 101 (2): 458–463. doi: 10.1378/chest.101.2.458.

42. Fàbregas N., Ewig S., Torres A. et al. Clinical diagnosis of ventilator associated pneumonia revisited: comparative validation using immediate post-mortem lung biopsies. Thorax. 1999; 54 (10): 867–873. doi: 10.1136/thx.54.10.867.

43. Torres A., el-Ebiary M., Padró L. et al. Validation of different techniques for the diagnosis of ventilator-associated pneumonia. Comparison with immediate postmortem pulmonary biopsy. Am J Respir Crit Care Med. 1994; 149 (2 Pt 1): 324–331. doi: 10.1164/ajrccm.149.2.8306025.

44. Knight P. H., Maheshwari N., Hussain J. et al. Complications during intrahospital transport of critically ill patients: Focus on risk identification and prevention. Int J Crit Illn Inj Sci. 2015; 5 (4): 256–264. doi: 10.4103/2229-5151.170840.

45. Fred H. L. Drawbacks and limitations of computed tomography: views from a medical educator. Tex Heart Inst J. 2004; 31 (4): 345–348.

46. Mohamed Hoesein F. Low-dose computed tomography instead of radiography in suspected pneumonia. Breathe (Sheff). 2019; 15 (1): 81–83. doi: 10.1183/20734735.0319-2018.

47. Prendki V., Scheffler M., Huttner B. et al. Low-dose computed tomography for the diagnosis of pneumonia in elderly patients: a prospective, interventional cohort study. Eur Respir J. 2018; 51 (5): 1702375. doi: 10.1183/13993003.02375-2017.

48. Kroft L. J.M, van der Velden L., Girón I. H., Roelofs J. J.H, de Roos A., Geleijns J. Added value of ultra-low-dose computed tomography, dose equivalent to chest x-ray radiography, for diagnosing chest pathology. J Thorac Imaging. 2019; 34 (3): 179–186. doi: 10.1097/RTI.0000000000000404.

49. Order of the Ministry of Health of the Russian Federation No. 919n of 15 November 2012 «Ob utverzhdenii Poryadka okazaniya meditsinskoi pomoshchi vzroslomu naseleniyu po profilyu ’anesteziologiya i reanimatologiya’». Available from: https://minzdrav.gov.ru/documents/9128-prikazministerstva-zdravoohraneniya-rossiyskoy-federatsii-ot-15-noyabrya-2012-g-919n-ob-utverzhdenii-poryadka-okazaniya-meditsinskoy-pomoschi-vzroslomu-naseleniyu-po-profilyu-anesteziologiyai-reanimatologiya Accessed 12 September 2025. (in Russian)

50. Lichtenstein D. A. BLUE-protocol and FALLS-protocol: two applications of lung ultrasound in the critically ill. Chest. 2015; 147 (6): 1659–1670. doi: 10.1378/chest.14-1313.

51. Lee L., DeCara J. M. Point-of-care ultrasound. Curr Cardiol Rep. 2020; 22 (11): 149. doi: 10.1007/s11886-020-01394-y.

52. Order of the Ministry of Labour and Social Protection of the Russian Federation No. 554n of 27 August 2018 «Ob utverzhdenii professional’nogo standarta ’Vrach — anesteziolog–reanimatolog’». Available from: <http://publication.pravo.gov.ru/Document/View/0001201809170020> Accessed 12 September 2025. (in Russian)

53. Lichtenstein D. A., Mezière G. A. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest. 2008; 134 (1): 117–125. doi: 10.1378/chest.07-2800.

54. Bouhemad B., Dransart-Rayé O., Mojoli F., Mongodi S. Lung ultrasound for diagnosis and monitoring of ventilator-associated pneumonia. Ann Transl Med. 2018; 6 (21): 418. doi: 10.21037/atm.2018.10.46.

55. Rouby J. J., Arbelot C., Gao Y. et al. Training for lung ultrasound score measurement in critically ill patients. Am J Respir Crit Care Med. 2018; 198 (3): 398–401. doi: 10.1164/rccm.201802-0227LE.

56. Protsenko D. N., Logvinov Y. I., Rodionov E. P., Lykhin V. N., Filyavin R. E., Solov’ev V. S. et al. Prakticheskaya ultrasonografiya. Natsional’noe rukovodstvo dlya vrachei. Moscow: GEOTAR-Media; 2022; 280. doi: https://doi.org/10.33029/9704-7333-7-PUSG-2022-1-280. (in Russian)

57. Bouhemad B., Mongodi S., Via G., Rouquette I. Ultrasound for «lung monitoring» of ventilated patients. Anesthesiology. 2015; 122 (2): 437–447. doi: 10.1097/ALN.0000000000000558.

58. Cox E. G. M., Wiersema R., Wong A., Van Der Horst I. C. C. Six versus eight and twenty-eight scan sites for B-line assessment: differences in examination time and findings. Intensive Care Med. 2020; 46 (5): 1063–1064. doi: 10.1007/s00134-020-06004-7.

59. Staub L. J., Biscaro R. R.M, Maurici R. Emergence of alveolar consolidations in serial lung ultrasound and diagnosis of ventilator-associated pneumonia. J Intensive Care Med. 2021; 36 (3): 304–312. doi: 10.1177/0885066619894279.

60. Vignon P., Chastagner C., Berkane V. et al. Quantitative assessment of pleural effusion in critically ill patients by means of ultrasonography. Crit Care Med. 2005; 33 (8): 1757–1763. doi: 10.1097/01.ccm.0000171532.02639.08.

61. Balik M., Plasil P., Waldauf P. et al. Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients. Intensive Care Med. 2006; 32 (2): 318. doi: 10.1007/s00134-005-0024-2.

62. Volpicelli G. Sonographic diagnosis of pneumothorax. Intensive Care Med. 2011; 37 (2): 224–232. doi: 10.1007/s00134-010-2079-y.

63. Özyilmaz E., Bayrakci S., Kuscu O. et al. The diagnostic cut off value of lung ultrasound score to differentiate hospital acquired/ventilator associated pneumonia and hospital acquired/ventilator associated tracheobronchitis [abstract]. Eur Respir J. 2020; 56 (Suppl 64): 348. doi: 10.1183/13993003.congress-2020.348.

64. Tekhnika sbora i transportirovaniya biomaterialov v mikrobiologicheskie laboratorii: Metodicheskie ukazaniya. Moscow: «Federal Hygienic and Epidemiological Center» of Rospotrebnadzor; 2006; 126. Available from: <https://www.rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=4750> Accessed 12 September 2025. (in Russian)

65. Kalil A. C., Metersky M. L., Klompas M. et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical practice guidelines by the infectious diseases society of America and the American thoracic society. Clin Infect Dis. 2016; 63 (5): e61e111. doi: 10.1093/cid/ciw353.

66. Fagon J. Y., Chastre J., Wolff M. et al. Invasive and noninvasive strategies for management of suspected ventilator-associated pneumonia. A randomized trial. Ann Intern Med. 2000; 132 (8): 621–630. doi: 10.7326/0003-4819-132-8-200004180-00004.

67. Bonten M. J., Bergmans D. C., Stobberingh E. E. et al. Implementation of bronchoscopic techniques in the diagnosis of ventilator-associated pneumonia to reduce antibiotic use. Am J Respir Crit Care Med. 1997; 156 (6): 1820–1824. doi: 10.1164/ajrccm.156.6.9610117.

68. Sanchez-Nieto J. M., Torres A., Garcia-Cordoba F. et al. Impact of invasive and noninvasive quantitative culture sampling on outcome of ventilator-associated pneumonia: a pilot study. Am J Respir Crit Care Med. 1998; 157 (2): 371–376. doi: 10.1164/ajrccm.157.2.97-02039.

69. Solé Violán J., Fernández J. A., Benítez A. B., Cardeñosa Cendrero J. A., Rodríguez de Castro F. Impact of quantitative invasive diagnostic techniques in the management and outcome of mechanically ventilated patients with suspected pneumonia. Crit Care Med. 2000; 28 (8): 2737–2741. doi: 10.1097/00003246-200008000-00009.

70. Ruiz M., Torres A., Ewig S. et al. Noninvasive versus invasive microbial investigation in ventilator-associated pneumonia: evaluation of outcome. Am J Respir Crit Care Med. 2000; 162 (1): 119–125. doi: 10.1164/ajrccm.162.1.9907090.

71. Martin-Loeches I., Chastre J., Wunderink R. G. Bronchoscopy for diagnosis of ventilator-associated pneumonia. Intensive Care Med. 2023; 49 (1): 79–82. doi: 10.1007/s00134-022-06898-5.

72. Yoo I. Y., Huh K., Shim H. J. et al. Evaluation of the Biofire filmarray pneumonia panel for rapid detection of respiratory bacterial pathogens and antibiotic resistance genes in sputum and endotracheal aspirate specimens. Int J Infect Dis. 2020; 95: 326–331. doi: 10.1016/j.ijid.2020.03.024.

73. Endimiani A., Hujer K. M., Hujer A. M. et al. Are we ready for novel detection methods to treat respiratory pathogens in hospital-acquired pneumonia?. Clin Infect Dis. 2011; 52 Suppl 4 (Suppl 4): S373–S383. doi: 10.1093/cid/cir054.

74. Cilloniz C., Liapikou A., Torres A. Advances in molecular diagnostic tests for pneumonia. Curr Opin Pulm Med. 2020; 26 (3): 241–248. doi: 10.1097/MCP.0000000000000668.

75. Liapikou A., Cillóniz C., Torres A. Emerging strategies for the noninvasive diagnosis of nosocomial pneumonia. Expert Rev Anti Infect Ther. 2019; 17 (7): 523–533. doi: 10.1080/14787210.2019.1635010.

76. Seng P., Rolain J. M., Fournier P. E., La Scola B., Drancourt M., Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol. 2010; 5 (11): 1733–1754. doi: 10.2217/fmb.10.127.

77. Seng P., Drancourt M., Gouriet F. et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis. 2009; 49 (4): 543–551. doi: 10.1086/600885.

78. Huang A. M., Newton D., Kunapuli A. et al. Impact of rapid organism identification via matrix-assisted laser desorption/ionization timeof-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis. 2013; 57 (9): 1237–1245. doi: 10.1093/cid/cit498.

79. Mok J. H., Eom J. S., Jo E. J. et al. Clinical utility of rapid pathogen identification using matrix-assisted laser desorption/ionization timeof-flight mass spectrometry in ventilated patients with pneumonia: a pilot study. Respirology. 2016; 21 (2): 321–328. doi: 10.1111/resp.12677.

80. Rossiiskie rekomendatsii. Opredelenie chuvstvitel’nosti mikroorganizmov k antimikrobnym preparatam. Versiya 2025-01. God utverzhdeniya (chastota peresmotra): 2025 (peresmotr ezhegodno). Smolensk: MAKMAKH, SGMU; 2025; 208. (in Russian)

81. European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST public consultations [Internet]. [cited 2025 Sep 12]. Available from: https://www.eucast.org/publications_and_documents/consultations/

82. Giske C. G., Turnidge J., Cantón R., Kahlmeter G.; EUCAST Steering Committee. Update from the European Committee on Antimicrobial Susceptibility Testing (EUCAST). J Clin Microbiol. 2022; 60 (3): e0027621. doi: 10.1128/JCM.00276-21.

83. Kuzmenkov A. Yu., Vinogradova A. G., Trushin I. V., Edelstein M. V., Avramenko A. A., Dekhnich A. V. et al. AMRmap — antibiotic resistance surveillance system in Russia. Clinical Microbiology and Antimicrobial Chemotherapy. 2021; 23 (2): 198–204. doi: https://doi.org/10.36488/cmac.2021.2.198-204. (in Russian).

84. Yakovlev S. V., Suvorova M. P., Bykov A. O. Infections caused by carbapenem-resistant Enterobacterales: epidemiology, clinical significance, and possibilities for antibiotic therapy optimization. Antibiot Khimioter = Antibiotics and Chemotherapy. 2020; 65 (5-6): 41–69. doi: https://doi.org/10.37489/0235-2990-2020-65-5-6-41-69. (in Russian)

85. Kozlov S. N., Kozlov R. S. Sovremennaya antimikrobnaya khimioterapiya: Rukovodstvo dlya vrachei. 3rd ed., rev. and enl. Moscow: Meditsinskoe informatsionnoe agentstvo; 2017; 400. (in Russian)

86. Sidorenko S. V., Tishkov V. I. Molekulyarnye osnovy rezistentnosti k antibiotikam. Uspekhi biologicheskoi khimii. 2004; 44: 263–306. (in Russian)

87. Xu E., Pérez-Torres D., Fragkou P. C., Zahar J. R., Koulenti D. Nosocomial pneumonia in the era of multidrug-resistance: updates in diagnosis and management. Microorganisms. 2021; 9 (3): 534. Published 2021 Mar 5. doi: 10.3390/microorganisms9030534.

88. Belotserkovskiy B. Z., Kostin D. M., Bykov A. O., Matyash M. I., Shifman E. M., Protsenko D. N. Early administration of ceftazidime–avibactam for effective antibacterial therapy of infections caused by carbapenem-resistant pathogens. Russian Journal of Anesthesiology and Reanimatology. 2024; (2): 78–90. doi: https://doi.org/10.17116/anaesthesiology202402178. (in Russian)

89. Beloborodov V. B., Goloshchapov O. V., Gusarov V. G., Dekhnich A. V., Zamyatin M. N., Zolotukhin K. N. et al. Diagnosis and antimicrobial therapy of infections caused by polyresistant microorganisms (updated 2024). Messenger of Anesthesiology and Resuscitation. 2025; 22 (2): 149–189. doi: https://doi.org/10.24884/20785658-2025-22-2-149-189. (in Russian)

90. Popov D. A. Comparative review of the modern methods for carbapenemases detection. Clinical Microbiology and Antimicrobial Chemotherapy. 2019; 21 (2): 125–133. doi: https://doi.org/10.36488/cmac.2019.2.125-133. (in Russian)

91. bioMérieux. BioFire Pneumonia Panel [Internet]. [cited 2025 Sep 12]. Available from: https://www.biomerieux.com/us/en/our-offer/clinical-products/biofire-pneumonia-panel.html

92. Murphy C. N., Fowler R., Balada-Llasat J. M. et al. Multicenter evaluation of the Biofire Filmarray Pneumonia/pneumonia plus panel for detection and quantification of agents of lower respiratory tract infection. J Clin Microbiol. 2020; 58 (7): e00128-20. doi: 10.1128/JCM.00128-20.

93. Edin A., Eilers H., Allard A. Evaluation of the Biofire Filmarray Pneumonia panel plus for lower respiratory tract infections. Infect Dis (Lond). 2020; 52 (7): 479–488. doi: 10.1080/23744235.2020.1755053.

94. Wareham D. W., Phee L. M., Abdul Momin M. H. F. Direct detection of carbapenem resistance determinants in clinical specimens using immunochromatographic lateral flow devices. J Antimicrob Chemother. 2018; 73 (7): 1997–1998. doi: 10.1093/jac/dky095.

95. Belotserkovskiy B. Z., Kruglov A. N., Ni O. G., Matyash M. I., Kostin D. M., Shifman E. M. et al. Etiological structure of infections in patients of the surgical intensive care unit in the post-covid era. Clinical Microbiology and Antimicrobial Chemotherapy. 2024; 26 (2): 124–140. doi: https://doi.org/10.36488/ cmac.2024.2.124-140. (in Russian)

96. Schnabel R., Fijten R., Smolinska A. et al. Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia. Sci Rep. 2015; 5: 17179. doi: 10.1038/srep17179.

97. Chen C. Y., Lin W. C., Yang H. Y. Diagnosis of ventilator-associated pneumonia using electronic nose sensor array signals: solutions to improve the application of machine learning in respiratory research. Respir Res. 2020; 21 (1): 45. doi: 10.1186/s12931-020-1285-6.

98. Kutz A., Briel M., Christ-Crain M. et al. Prognostic value of procalcitonin in respiratory tract infections across clinical settings. Crit Care. 2015; 19 (1): 74. doi: 10.1186/s13054-015-0792-1.

99. Samsudin I., Vasikaran S. D. Clinical utility and measurement of procalcitonin. Clin Biochem Rev. 2017; 38 (2): 59–68.

100. Kim J. H. Clinical utility of procalcitonin on antibiotic stewardship: a narrative review. Infect Chemother. 2022; 54 (4): 610–620. doi: 10.3947/ic.2022.0162.

101. Póvoa P., Martin-Loeches I., Ramirez P. et al. Biomarkers kinetics in the assessment of ventilator-associated pneumonia response to antibiotics — results from the BioVAP study. J Crit Care. 2017; 41: 91–97. doi: 10.1016/j.jcrc.2017.05.007.

102. Overstijns M., Scheffler P., Buttler J., Beck J., El Rahal A. Serum procalcitonin in the diagnosis of pneumonia in the neurosurgical intensive care unit. Neurosurg Rev. 2025; 48 (1): 373. doi: 10.1007/s10143-02503529-7.

103. Pereira M. A., Rouxinol-Dias A. L., Vieira T., Paiva J. A., Pereira J. M. Usefulness of early c-reactive protein kinetics in response and prognostic assessment in infected critically ill patients: an observational retrospective study. Acta Med Port. 2019; 32 (12): 737–745. doi: 10.20344/amp.12143.

104. Farkas J. D. The complete blood count to diagnose septic shock. J Thorac Dis. 2020; 12 (Suppl 1): S16-S21. doi: 10.21037/jtd.2019.12.63.

105. Belok S. H., Bosch N. A., Klings E. S., Walkey A. J. Evaluation of leukopenia during sepsis as a marker of sepsis-defining organ dysfunction. PLoS One. 2021; 16 (6): e0252206. Published 2021 Jun 24. doi: 10.1371/journal.pone.0252206.

106. Gromelsky Ljungcrantz E., Askman S., Sjövall F., Paulsson M. Biomarkers in lower respiratory tract samples in the diagnosis of ventilatorassociated pneumonia: a systematic review. Eur Respir Rev. 2025; 34 (176): 240229. doi: 10.1183/16000617.0229-2024.

107. Conway Morris A., Kefala K., Wilkinson T. S. et al. Diagnostic importance of pulmonary interleukin-1beta and interleukin-8 in ventilatorassociated pneumonia. Thorax. 2010; 65 (3): 201–207. doi: 10.1136/thx.2009.122291

108. Hellyer T. P., McAuley D. F., Walsh T. S. et al. Biomarker-guided antibiotic stewardship in suspected ventilator-associated pneumonia (VAPrapid2): a randomised controlled trial and process evaluation. Lancet Respir Med. 2020; 8 (2): 182–191. doi: 10.1016/S2213-2600(19)30367-4.

109. Torres A., Niederman M. S., Chastre J. et al. Summary of the international clinical guidelines for the management of hospital-acquired and ventilator-acquired pneumonia. ERJ Open Research. 2018; 4 (2): 00028–02018. doi: 10.1183/23120541.00028-2018.

110. Pugin J., Auckenthaler R., Mili N., Janssens J. P., Lew P. D., Suter P. M. Diagnosis of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic and nonbronchoscopic «blind» bronchoalveolar lavage fluid. Am Rev Respir Dis. 1991; 143 (5 Pt 1): 1121–1129. doi: 10.1164/ajrccm/143.5_Pt_1.1121.

111. Kollef M. H. Clinical presentation and diagnostic evaluation of ventilator-associated pneumonia. In: Manaker S., ed. UpToDate [Internet]. Wolters Kluwer; 2025 Apr 25 [cited 2025 Sep 12]. Available from: https://www.uptodate.com/contents/clinical-presentation-and-diagnostic-evaluation-of-ventilator-associated-pneumonia

112. БBelotserkovskiy B. Z. Nozokomial’naya pnevmoniya, svyazannaya s IVL u khirurgicheskikh bol’nykh [dissertation]. Moscow; 1999. (in Russian)

113. Protsenko D. N. Nozokomial’naya pnevmoniya u bol’nykh v ostryi period tyazheloi travmy [dissertation]. Moscow; 2003. (in Russian)

114. Zagli G., Cozzolino M., Terreni A., Biagioli T., Caldini A. L., Peris A. Diagnosis of ventilator-associated pneumonia: a pilot, exploratory analysis of a new score based on procalcitonin and chest echography. Chest. 2014; 146 (6): 1578–1585. doi: 10.1378/chest.13-2922.

115. Zhou J., Song J., Gong S. et al. Lung ultrasound combined with procalcitonin for a diagnosis of ventilator-associated pneumonia. Respir Care. 2019; 64 (5): 519–527. doi: 10.4187/respcare.06377.

116. Mongodi S., Via G., Girard M. et al. Lung ultrasound for early diagnosis of ventilator-associated pneumonia. Chest. 2016; 149 (4): 969–980. doi: 10.1016/j.chest.2015.12.012.

117. Bouhemad B., Liu Z. H., Arbelot C. et al. Ultrasound assessment of antibiotic-induced pulmonary reaeration in ventilator-associated pneumonia. Crit Care Med. 2010; 38 (1): 84–92. doi: 10.1097/CCM.0b013e3181b08cdb.

118. Ego A., Preiser J. C., Vincent J. L. Impact of diagnostic criteria on the incidence of ventilator-associated pneumonia. Chest. 2015; 147 (2): 347–355. doi: 10.1378/chest.14-0610.

119. Claessens Y. E., Debray M. P., Tubach F. et al. Early chest computed tomography scan to assist diagnosis and guide treatment decision for suspected community-acquired pneumonia. Am J Respir Crit Care Med. 2015; 192 (8): 974–982. doi: 10.1164/rccm.201501-0017OC.

120. Self W. H., Courtney D. M., McNaughton C. D., Wunderink R. G., Kline J. A. High discordance of chest x-ray and computed tomography for detection of pulmonary opacities in ED patients: implications for diagnosing pneumonia. Am J Emerg Med. 2013; 31 (2): 401–405. doi: 10.1016/j.ajem.2012.08.041.


Review

For citations:


Protsenko DN, Belotserkovskiy BZ, Matyash MI, Kruglov AN, Bykov AO, Shifman EM. Diagnosis of Hospital-Acquired Pneumonia. Antibiotiki i Khimioterapiya = Antibiotics and Chemotherapy. 2025;70(7-8):47-67. (In Russ.) https://doi.org/10.37489/0235-2990-2025-70-7-8-47-67. EDN: XBHHXB

Views: 268


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)