Preview

Антибиотики и Химиотерапия

Расширенный поиск

Альтернативный терапевтический потенциал антибиотиков, ингибирующих бактериальную трансляцию, как регуляторов митохондриальной дисфункции

https://doi.org/10.37489/0235-2990-2025-70-7-8-74-91

EDN: WMUGXT

Аннотация

Антибиотики, эволюционно появившиеся как химическое оружие одних бактерий против других, в первую очередь известны своим микробицидным и/или бактериостатическим действием, однако они также обладают многочисленными плейотропными эффектами: антиамилоиденными, противовоспалительными, антиоксидантными и антиапоптотическими. В обзоре рассматриваются антибактериальные препараты, по механизму действия, ингибирующие трансляцию, в первую очередь тетрациклины, в контексте их неантибиотического биологического аспекта, а именно возможности поддерживающей терапии при нейродегенеративных заболеваниях, а также их антимитохондриальное действие и опосредованный им эффект отмены старения.

Об авторах

О. В. Кисиль
ФГБНУ «Научно-исследовательский институт по изысканию новых антибиотиков им. Г.Ф. Гаузе»
Россия

Ольга Валерьевна Кисиль — к. х. н., ученый секретарь.

Москва


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов, связанных с публикацией настоящей статьи



М. Э. Зверева
Московский государственный университет им. М.В. Ломоносова
Россия

Мария Эмильевна Зверева — д. х. н., профессор кафедры химии природных соединений химического факультета МГУ им. М. В. Ломоносова.

Москва


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов, связанных с публикацией настоящей статьи



Е. Н. Олсуфьева
ФГБНУ «Научно-исследовательский институт по изысканию новых антибиотиков им. Г.Ф. Гаузе»
Россия

Евгения Николаевна Олсуфьева — д. х. н., профессор, главный научный сотрудник.

Москва


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов, связанных с публикацией настоящей статьи



Список литературы

1. Naresh N. U., Haynes C. M. Signaling and regulation of the mitochondrial unfolded protein response. Cold Spring Harb Perspect Biol. 2019; 11 (6): a033944. doi: 10.1101/cshperspect.a033944.

2. Фомченко Н. Е., Воропаев Е. В., Скачков А. В., Затора Н. Ю. Биологическая роль митохондрий в старении организма. Проблемы здоровья и экологии. 2015; 4 (46): 8–13. doi: https://doi.org/10.51523/2708-6011.2015-12-4-2.

3. Henrich M. T., Oertel W. H., Surmeier D. J., Geibl F. F. Mitochondrial dysfunction in Parkinson’s disease — a key disease hallmark with therapeutic potential. Mol Neurodegener.2023; 18, 83. doi: 10.1186/s13024-02300676-7.

4. Pagliarini D. J., Calvo S. E., Chang B., Sheth S. A., Vafai S. B., Ong S. E., Walford G. A., Sugiana C., Boneh A., Chen W. K., Hill D. E., Vidal M., Evans J. G., Thorburn D. R., Carr S. A., Mootha V. K. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008; 134 (1), 112–123. doi: 10.1016/j.cell.2008.06.016.

5. Markulin I., Matasin M., Turk V. E., Salković-Petrisic M. Challenges of repurposing tetracyclines for the treatment of Alzheimer's and Parkinson's disease. J Neural Transm (Vienna). 2022; 129 (5–6): 773–804. doi: 10.1007/s00702-021-02457-2.

6. Salarda E. M., Zhao N. O., Lima C. N., Fries G. R. Mini-review: The antiaging effects of lithium in bipolar disorder. Neurosci Lett. 2021; 79: 136051. doi: 10.1016/j.neulet.2021.136051.

7. Kummer E., Ban N. Mechanisms and regulation of protein synthesis in mitochondria. Nat Rev Mol Cell Biol. 2021; 22 (5): 307–325. doi: 10.1038/s41580-021-00332-2.

8. Ozkurede U., Miller R. A. Improved mitochondrial stress response in longlived Snell dwarf mice. Aging Cell. 2019; 18 (6): e13030. doi: 10.1111/acel.13030.

9. Appleby B. S., Nacopoulos D., Milano N., Zhong K., Cummings J. L. A review: treatment of Alzheimer's disease discovered in repurposed agents. Dement Geriatr Cogn Disord. 2013; 35 (1–2), 1–22. doi: 10.1159/000345791.

10. Pallen M. J. Time to recognise that mitochondria are bacteria? Trends Microbiol. 2011; 19 (2): 58–64. doi: 10.1016/j.tim.2010.11.001.

11. Gray M. W., Burger G., Lang B. F. The origin and early evolution of mitochondria. Genome Biol. 2001; 2 (6): REVIEWS1018. doi: 10.1186/gb2001-2-6-reviews1018.

12. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F., Schreier P. H., Smith A. J., Staden R., Young I. G. Sequence and organization of the human mitochondrial genome. Nature. 1981; 290 (5806): 457–65. doi: 10.1038/290457a0.

13. Мазунин И. О., Володько Н. В., Стариковская Е. Б., Сукерник Р. И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010; 44 (5): 755–772.

14. Костерина Е. А., Козенков И. И., Касымов В. А., Каменский П. А., Доминова И. Н., Королёва Ю. А., Патрушева В. Е., Богачев Р. С., Литвинова Л. С., Бабак С. В., Моисеева Е. М., Богданов Е. А., Мухортова О. А., Вавилина Я. С., Михальченкова Т. А., Патрушев М. В. Митохондриальный белковый профиль и его роль в патологических процессах. Бюллетень сибирской медицины. 2013; 12 (3): 5–17.

15. Aibara S., Singh V., Modelska A., Amunts A. Structural basis of mitochondrial translation. Elife. 2020; 9: e58362. doi: 10.7554/eLife.58362

16. Houtkooper R. H., Mouchiroud L., Ryu D., Moullan N., Katsyuba E., Knott G., Williams R. W., Auwerx J. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 2013; 497 (7450): 451–457. doi: 10.1038/nature12188.

17. Cilleros-Holgado P., Gómez-Fernández D., Piñero-Pérez R., Reche-López D., Álvarez-Córdoba M., Munuera-Cabeza M., Talaverón-Rey M., PoveaCabello S., Suárez-Carrillo A., Romero-González A., Suárez-Rivero J. M., Romero-Domínguez J. M., Sánchez-Alcázar J. A. mtUPR Modulation as a therapeutic target for primary and secondary mitochondrial diseases. Int J Mol Sci. 2023; 24 (2): 1482. doi: 10.3390/ijms24021482.

18. Тодоров И. Н., Тодоров Г. И. Мультифакторная природа высокой частоты мутаций в мтДНК соматических клеток млекопитающих. Биохимия. 2009; 74: 1184–1194.

19. Ferrari A., Del'Olio S., Barrientos A. The Diseased Mitoribosome. FEBS Lett. 2021; 595 (8): 1025–1061. doi: 10.1002/1873-3468.14024.

20. Ronayne C. T., Jackson T. D., Bennett C. F., Perry E. A., Kantorovic N., Puigserver P. Tetracyclines activate mitoribosome quality control and reduce ER stress to promote cell survival. EMBO reports. 2023; 24 (12), e57228. doi: 10.15252/embr.202357228.

21. Wilkins H. M., Weidling I. W., Ji Y., Swerdlow R. H. Mitochondria-derived damage-associated molecular patterns in neurodegeneration. Front. Immunol. 2017; 8: 508. doi: 10.3389/fimmu.2017.00508.

22. Yi H. S., Chang J. Y., Shong M. The Mitochondrial unfolded protein response and mitohormesis: a perspective on metabolic diseases. J Mol Endocrinol. 2018; 61 (3): R91–R105. doi: 10.1530/JME-18-0005.

23. Wang Y. T., Lim Y., McCall M. N., Huang K. T., Haynes C. M., Nehrke K., Brookes P. S. Cardioprotection by the mitochondrial unfolded protein response requires ATF5. Am. J. Physiol. Heart Circ. Physiol. 2019; 317: H472–H478. doi: 10.1152/ajpheart.00244.2019.

24. O’Malley J., Kumar R., Inigo J., Yadava N., Chandra D. Mitochondrial stress response and cancer. Trends Cancer. 2020; 6: 688–701. doi: 10.1016/j.trecan.2020.04.009.

25. Zhang X., Fan Y., Tan K. A bird's eye view of mitochondrial unfolded protein response in cancer: mechanisms, progression and further applications. Cell Death Dis. 2024; 15 (9): 667. doi: 10.1038/s41419-024-07049-y.

26. Patergnani S., Morciano G., Carinci M., Leo S., Pinton P., Rimessi A. The «mitochondrial stress responses»: the «Dr. Jekyll and Mr. Hyde» of neuronal disorders. Neural Regen Res. 2022; 17 (12): 2563–2575. doi: 10.4103/1673-5374.339473.

27. Lautenschäger J., Kaminski Schierle G. S. Mitochondrial degradation of amyloidogenic proteins — a new perspective for neurodegenerative diseases. Prog Neurobiol. 2019; 181: 101660. doi: 10.1016/j.pneurobio.2019.101660.

28. Bueno M., Papazoglou A., Valenzi E., Rojas M., Lafyatis R., Mora A. L. Mitochondria, aging, and cellular senescence: implications for scleroderma. Curr Rheumatol Rep. 2020; 22 (8): 37. doi: 10.1007/s11926-020-00920-9.

29. Papa L., Germain D. SirT3 regulates the mitochondrial unfolded protein response. Mol Cell Biol. 2014; 34 (4): 699–710. doi: 10.1128/MCB.01337-13.

30. Riar A. K., Burstein S. R., Palomo G. M., Arreguin A., Manfredi G., Germain D. Sex specific activation of the ERα axis of the mitochondrial UPR (UPRmt) in the G93A-SOD1 mouse model of familial ALS. Hum Mol Genet. 2017; 26 (7): 1318–1327. doi: 10.1093/hmg/ddx049.

31. Münch C. The different axes of the mammalian mitochondrial unfolded protein response. BMC Biol. 2018; 16 (1): 81. doi: 10.1186/s12915-0180548-x.

32. Xu M., Xue R. Q., Lu Y., Yong S. Y., Wu Q., Cui Y. L., Zuo X. T., Yu X. J., Zhao M., Zang W. J. Choline ameliorates cardiac hypertrophy by regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway. Cardiovasc Res. 2019; 115: 530–545. doi: 10.1093/cvr/cvy217.

33. Bora S., Vardhan G. S. H., Deka N., Khataniar L., Gogoi D., Baruah A. Paraquat exposure over generation affects lifespan and reproduction through mitochondrial disruption in C. elegans. Toxicology. 2021; 447: 152632. doi: 10.1016/j.tox.2020.152632.

34. Rauthan M., Pilon M. A chemical screen to identify inducers of the mitochondrial unfolded protein response in C. elegans. Worm. 2015; 4 (4): e1096490. doi: 10.1080/21624054.2015.1096490.

35. Щекотихин А. Е., Олсуфьева Е. Н., Янковская В. С. Антибиотики и родственные соединения. Научное издание. М.: Лаборатория знаний, 2022; 511. ISBN 978-5-93208-247-8

36. Amounts A., Brown A., Toots J., Scheres S. H. W., Ramakrishnan V. Ribosome. The structure of the human mitochondrial ribosome. Science. 2015; 348 (6230): 95–98. doi: 10.1126/science.aaa1193.

37. Ott M., Herrmann J. M. Co-translational membrane insertion of mitochondrially encoded proteins. Biochim Biophys Acta. 2010; 1803 (6): 767–75. doi: 10.1016/j.bbamcr.2009.11.010.

38. O'Brien T. W. Gene. 2002 Mar 6; 286 (1): 73–9. doi: 10.1016/s0378-1119(01)00808-3.

39. Nadler F., Lavdovskaia E., Richter-Dennerlein R. Maintaining mitochondrial ribosome function: The role of ribosome rescue and recycling factors. RNA Biology. 2022; 19 (1): 117–131. doi: 10.1080/15476286.2021.2015561.

40. Moullan N., Mouchiroud L., Wang X., Ryu D., Williams E. G., Mottis A., Jovaisaite V., Frochaux M. V., Quiros P. M., Deplancke B., Houtkooper R. H., Auwerx J. Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep. 2015; 10 (10): 1681–1691. doi: 10.1016/j.celrep.2015.02.034.

41. Chatzispyrou I. A., Held N. M., Mouchiroud L., Auwerx J., Houtkooper R. H. Tetracycline antibiotics impair mitochondrial function and its experimental use confounds research. Cancer Res. 2015; 75 (21): 4446–4449. doi: 10.1158/0008-5472.CAN-15-1626.

42. Zhang L., Ging N. C., Komoda T., Hanada T., Suzuki T., Watanabe K. Antibiotic susceptibility of mammalian mitochondrial translation. FEBS letters. 2005; 579 (28), 6423–6427. doi: 10.1016/j.febslet.2005.09.103.

43. McKee E. E., Ferguson M., Bentley A. T., Marks T. A. Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones. Antimicrob Agents Chemother. 2006; 50 (6): 2042–2049. doi: 10.1128/AAC.01411-05.

44. Wüst R. C. I., Coolen B. F., Held N. M., Daal M. R. R., Alizadeh Tazehkandi V., Baks-Te Bulte L., Wiersma M., Kuster D. W. D., Brundel B. J. J. M., van Weeghel M., Strijkers G. J., Houtkooper R. H. The antibiotic doxycycline impairs cardiac mitochondrial and contractile function. Int J Mol Sci. 2021; 22 (8): 4100. doi: 10.3390/ijms22084100.

45. Li C. H., Tzeng S. L., Cheng Y. W., Kang J. J. Chloramphenicol-induced mitochondrial stress increases p21 expression and prevents cell apoptosis through a p21-dependent pathway. J Biol Chem. 2005; 280 (28): 26193–26199. doi: 10.1074/jbc.M501371200.

46. Kupsch K., Hertel S., Kreutzmann P., Wolf G., Wallesch C. W., Siemen D., Schönfeld P. Impairment of mitochondrial function by minocycline. FEBS J. 2009; 276 (6): 1729–1738. doi: 10.1111/j.1742-4658.2009.06904.x.

47. Han J., Kim S. J., Ryu M. J., Jang Y., Lee M. J., Ju X., Lee Y. L., Cui J., Shong M., Heo J. Y., Kweon G. R. Chloramphenicol mitigates oxidative stress by inhibiting translation of mitochondrial complex in dopaminergic neurons of toxin-induced parkinson's disease model. Oxid Med Cell Longev. 2019; 2019: 4174803. doi: 10.1155/2019/4174803.

48. Jones C. N., Miller C., Tenenbaum A., Spremulli L. L., Saada A. Antibiotic effects on mitochondrial translation and in patients with mitochondrial translational defects. Mitochondrion. 2009; 9 (6): 429–437. doi: 10.1016/j.mito.2009.08.001.

49. Negari S. B., Aouizerat T., Tenenbaum A., Cohen-Cymberknoh M., Shoseyov D., Kerem E., Saada A. Mitochondrial OXPHOS function is unaffected by chronic azithromycin treatment. J Cyst Fibros. 2013; 12 (6): 682–687. doi: 10.1016/j.jcf.2013.04.006.

50. de Vries H., Arendzen A. J., Kroon A. M. The interference of the macrolide antibiotics with mitochondrial protein synthesis. Biochim Biophys Acta. 1973; 331 (2): 264–75. doi: 10.1016/0005-2787(73)90439-5.

51. Sapadin A. N., Fleischmajer R. Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad Dermatol. 2006; 54 (2): 258–265. doi: 10.1016/j.jaad.2005.10.004.

52. Kelly W. L., Pan L., Li C. Thiostrepton biosynthesis: prototype for a new family of bacteriocins. J Am Chem Soc. 2009; 131 (12): 4327–34. doi: 10.1021/ja807890a.

53. Guimarães C. A., Linden R. Chloramphenicol induces apoptosis in the developing brain. 2000; 39 (9): 1673–1679. doi: 10.1016/s0028-3908(99)00246-4.

54. Itoh Y., Singh V., Khawaja A., Naschberger A., Nguyen M. D., Rorbach J., Amunts A. Structure of the mitoribosomal small subunit with streptomycin reveals Fe-S clusters and physiological molecules. Elife. 2022; 11: e77460. doi: 10.7554/eLife.77460.

55. Itoh Y., Khawaja A., Laptev I., Cipullo M., Atanassov I., Sergiev P., Rorbach J., Amunts A. Mechanism of mitoribosomal small subunit biogenesis and preinitiation. Nature. 2022; 606 (7914): 603–608. doi: 10.1038/s41586-022-04795-x.

56. Gao Z., Chen Y., Guan M. X. Mitochondrial DNA mutations associated with aminoglycoside induced ototoxicity. J Otol. 2017; 12 (1): 1–8. doi: 10.1016/j.joto.2017.02.001.

57. Chopra I., Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001; 65 (2): 232–260. doi: 10.1128/MMBR.65.2.232-260.2001.

58. Kühlbrandt W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015; 13: 89. doi: 10.1186/s12915-0150201-x.

59. Karlsson M., Hammers S., Nilsson-Ehle I., Malmborg A. S., Wretlind B. Concentrations of doxycycline and penicillin G in sera and cerebrospinal fluid of patients treated for neuroborreliosis. Antimicrob Agents Chemother. 1996; 40 (5): 1104–1107. doi: 10.1128/AAC.40.5.1104.

60. Kim S., Nam H. Y., Lee J., Seo J. Mitochondrion-targeting peptides and peptidomimetics: recent progress and design principles. Biochemistry. 2020; 59 (3): 270–284. doi: 10.1021/acs.biochem.9b00857.

61. Liberman E. A., Topaly V. P., Tsofina L. M., Jasaitis A. A., Skulachev V. P. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature. 1969; 65 (222): 1076–1078.

62. Spare T., Ratcliffe A., Hallett D., Cochrane E., Lassalle G., Froidbise A., Stevenson B. Triphenylphosphonium-tethered tetracyclines for use in treating cancer. United States patent. WO 2018/193114 A1. 2018 Oct 25.

63. Pavlova J. A., Khairullina Z. Z., Tereshchenkov A. G., Nazarov P. A., Lukianov D. A., Volynkina I. A., Skvortsov D. A., Makarov G. I., Abad E., Murayama S. Y., Kajiwara S., Paleskava A., Konevega A. L., Antonenko Y. N., Lyakhovich A., Osterman I. A., Bogdanov A. A., Sumbatyan N. V. Triphenilphosphonium analogs of chloramphenicol as dual-acting antimicrobial and antiproliferating agents. Antibiotics (Basel). 2021; 10 (5): 489. doi: 10.3390/antibiotics10050489.

64. Bonuccelli G., Brooks D. R., Shepherd S., Sotgia F., Lisanti M. P. Antibiotics that target mitochondria extend lifespan in C. elegans. Aging (Albany NY). 2023; 15 (21): 11764–11781. doi: 10.18632/aging.205229.

65. Owusu-Ansah E., Song W., Perrimon N. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell. 2013; 155 (3): 699–712. doi: 10.1016/j.cell.2013.09.021.

66. Durieux J., Wolff S., Dillin A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell. 2011; 144 (1): 79–91. doi: 10.1016/j.cell.2010.12.016.

67. Mouchiroud L., Houtkooper R. H., Moullan N., Katsyuba E., Ryu D., Cantó C., Mottis A., Jo Y. S., Viswanathan M., Schoonjans K., Guarente L., Auwerx J. The NAD (+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell. 2013; 154 (2): 430–441. doi: 10.1016/j.cell.2013.06.016.

68. Bennett C. F., Vander Wende H., Simko M., Klum S., Barfield S., Choi H., Pineda V. V., Kaeberlein M. Activation of the mitochondrial unfolded protein response does not predict longevity in Caenorhabditis elegans. Nat Commun. 2014; 5: 3483. doi: 10.1038/ncomms4483.

69. Ashleigh T., Swerdlow R. H., Beal M. F. The role of mitochondrial dysfunction in Alzheimer's disease pathogenesis. Alzheimers Dement. 2023; 19 (1): 333–342. doi: 10.1002/alz.12683.

70. Lindström V., Gustafsson G., Sanders L. H., Howlett E. H., Sigvardson J., Kasrayan A., Ingelsson M., Bergström J., Erlandsson A. Extensive uptake of α-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage. Mol Cell Neurosci. 2017; 82: 143–156. doi: 10.1016/j.mcn.2017.04.009.

71. Шварцман А. Л., Сенкевич К. А., Емельянов А. К., Пчелина С. Н. Прионные свойства альфа-синуклеина. Молекулярная биология. 2019; 53 (3): 380–387. doi: https://doi.org/10.1134/S0026898419030182.

72. Di Maio R., Barrett P. J., Hoffman E. K., Barrett C. W., Zharikov A., Borah A., Hu X., McCoy J., Chu C. T., Burton E. A., Hastings T. G., Greenamyre J. T. α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson's disease. Sci Transl Med. 2016; 8 (342): 342ra78. doi: 10.1126/scitranslmed.aaf3634.

73. Gottschalk W. K., Lutz M. W., He Y. T., Saunders A. M., Burns D. K., Roses A. D., Chiba-Falek O. The broad impact of TOM40 on neurodegenerative diseases in aging. J Parkinsons Dis Alzheimers Dis. 2014; 1 (1): 12. doi: 10.13188/2376-922X.1000003.

74. Pramstaller P. P., Schlossmacher M. G., Jacques T. S., Scaravilli F., Eskelson C., Pepivani I., Hedrich K., Adel S., Gonzales-McNeal M., Hilker R., Kramer P. L., Klein C. Lewy body Parkinson's disease in a large pedigree with 77 Parkin mutation carriers. Ann Neurol. 2005; 58 (3): 411–422. doi: 10.1002/ana.20587.

75. Paldino E., Balducci C., La Vitola P., Artioli L., D'Angelo V., Giampà C., Artuso V., Forloni G., Fusco F. R. Neuroprotective effects of doxycycline in the R6/2 mouse model of huntington's disease. Mol Neurobiol. 2020; 57 (4): 1889–1903. doi: 10.1007/s12035-019-01847-8.

76. Yano H., Baranov S. V., Baranova O. V., Kim J., Pan Y., Yablonska S., Carlisle D. L., Ferrante R. J., Kim A. H., Friedlander R. M. Inhibition of mitochondrial protein import by mutant huntingtin. Nat Neurosci. 2014; 17 (6): 822–831. doi: 10.1038/nn.3721.

77. Lautenschläger J., Wagner-Valladolid S., Stephens A. D., FernándezVillegas A., Hockings C., Mishra A., Manton J. D., Fantham M. J., Lu M., Rees E. J., Kaminski C. F., Kaminski Schierle G. S. Intramitochondrial proteostasis is directly coupled to α-synuclein and amyloid β1-42 pathologies. J Biol Chem. 2020; 295 (30): 10138–10152. doi: 10.1074/jbc.RA119.011650.

78. Ji T., Zhang X., Xin Z., Xu B., Jin Z., Wu J., Hu W., Yang Y. Does perturbation in the mitochondrial protein folding pave the way for neurodegeneration diseases? Ageing Res Rev. 2020; 57: 100997. doi: 10.1016/j.arr.2019.100997.

79. Beck J. S., Mufson E. J., Counts S. E. Evidence for Mitochondrial UPR Gene Activation in Familial and Sporadic Alzheimer's Disease. Curr Alzheimer Res. 2016; 13 (6): 610–614. doi: 10.2174/1567205013666151221145445.

80. Cooper J. F., Machiela E., Dues D. J., Spielbauer K. K., Senchuk M. M., Van Raamsdonk J. M. Activation of the mitochondrial unfolded protein response promotes longevity and dopamine neuron survival in Parkinson's disease models. Sci Rep. 2017; 7 (1): 16441. doi: 10.1038/s41598-017-16637-2.

81. Shen Y., Ding M., Xie Z., Liu X., Yang H., Jin S., Xu S., Zhu Z., Wang Y., Wang D., Xu L., Zhou X., Wang P., Bi J. Activation of Mitochondrial Unfolded Protein Response in SHSY5Y Expressing APP Cells and APP/PS1 Mice. Front Cell Neurosci. 2020; 13: 568. doi: 10.3389/fncel.2019.00568.

82. Counts S. E., Kelly S. C., Weinberg R. B., Beck J. S. Mitochondrial unfolded protein response (mtupr) dysfunction during the progression of alzheimer’s disease. Alzheimer’s Dement. 2017; 13 (7): P674–P675. doi: 10.1016/j.jalz.2017.06.830.

83. Martinez B. A., Petersen D. A., Gaeta A. L., Stanley S. P., Caldwell G. A., Caldwell K. A. Dysregulation of the mitochondrial unfolded protein response induces non-apoptotic dopaminergic neurodegeneration in C. elegans models of Parkinson's disease. J Neurosci. 2017; 37 (46): 11085–11100. doi: 10.1523/JNEUROSCI.1294-17.2017.

84. Stoilova T., Colombo L., Forloni G., Tagliavini F., Salmona M. A new face for old antibiotics: tetracyclines in treatment of amyloidoses. J Med Chem. 2013; 56 (15): 5987–6006. doi: 10.1021/jm400161p.

85. Dominguez-Meijide A., Parrales V., Vasili E., González-Lizárraga F., König A., Lázaro D. F., Lannuzel A., Haik S., Del Bel E., Chehín R., Raisman-Vozari R., Michel P. P., Bizat N., Outeiro T. F. Doxycycline inhibits αsynuclein-associated pathologies in vitro and in vivo. Neurobiol Dis. 2021; 151: 105256. doi: 10.1016/j.nbd.2021.105256.

86. González-Lizárraga F., Socías S. B., Ávila C. L., Torres-Bugeau C. M., Barbosa L. R., Binolfi A., Sepúlveda-Díaz J. E., Del-Bel E., Fernandez C. O., Papy-Garcia D., Itri R., Raisman-Vozari R., Chehín R. N. Repurposing doxycycline for synucleinopathies: remodelling of α-synuclein oligomers towards non-toxic parallel beta-sheet structured species. Sci Rep. 2017; 7: 41755. doi: 10.1038/srep41755.

87. Tagliavini F., Forloni G., Colombo L., Rossi G., Girola L., Canciani B., Angeretti N., Giampaolo L., Peressini E., Awan T., De Gioia L., Ragg E., Bugiani O., Salmona M. Tetracycline affects abnormal properties of synthetic PrP peptides and PrP (Sc) in vitro. J Mol Biol. 2000; 300 (5): 1309–1322. doi: 10.1006/jmbi.2000.3840.

88. González-Lizárraga F., Ploper D., Ávila C. L., Socías S. B., Dos-SantosPereira M., Machín B., Del-Bel E., Michel P. P., Pietrasanta L. I., RaismanVozari R., Chehín R. CMT-3 targets different α-synuclein aggregates mitigating their toxic and inflammogenic effects. Sci Rep. 2020; 10 (1): 20258. doi: 10.1038/s41598-020-76927-0.

89. Sun Y., Liu W. Z., Liu T., Feng X., Yang N., Zhou H. F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015; 35 (6): 600–604. doi: 10.3109/10799893.2015.1030412.

90. Tikka T., Fiebich B. L., Goldsteins G., Keinanen R., Koistinaho J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci. 2001; 21 (8): 2580–2588. doi: 10.1523/JNEUROSCI.21-08-02580.2001.

91. de Los Reyes Corrales T., Losada-Pérez M., Casas-Tintó S. JNK pathway in CNS pathologies. Int J Mol Sci. 2021; 22 (8): 3883. doi: 10.3390/ijms22083883.

92. Shieh J. M., Huang T. F., Hung C. F., Chou K. H., Tsai Y. J., Wu W. B. Activation of c-Jun N-terminal kinase is essential for mitochondrial membrane potential change and apoptosis induced by doxycycline in melanoma cells. Br J Pharmacol. 2010; 160 (5): 1171–1184. doi: 10.1111/j.1476-5381.2010.00746.x.

93. Albensi B. C. What is nuclear factor kappa B (NF-κB) doing in and to the mitochondrion? Front Cell Dev Biol. 2019; 7: 154. doi: 10.3389/fcell.2019.00154.

94. Alexander-Savino C. V. Hayden M. S., Richardson C., Zhao J., Poligone B. Doxycycline is an NF-κB inhibitor that induces apoptotic cell death in malignant T-cells. Oncotarget. 2016; 7 (46): 75954–75967. doi: 10.18632/oncotarget.12488.

95. Fan T. J., Han L. H., Cong R. S., Liang J. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai). 2005; 37 (11): 719–727. doi: 10.1111/j.1745–7270.2005.00108.x.

96. Scarabelli T. M., Stephanou A., Pasini E., Gitti G., Townsend P., Lawrence K., Chen-Scarabelli C., Saravolatz L., Latchman D., Knight R., Gardin J. Minocycline inhibits caspase activation and reactivation, increases the ratio of XIAP to smac/DIABLO, and reduces the mitochondrial leakage of cytochrome C and smac/DIABLO. J Am Coll Cardiol. 2004; 43 (5): 865–874. doi: 10.1016/j.jacc.2003.09.050.

97. Wu Z., Zou X., Zhu W., Mao Y., Chen L., Zhao F. Minocycline is effective in intracerebral hemorrhage by inhibition of apoptosis and autophagy. J Neurol Sci. 2016; 371: 88–95. doi: 10.1016/j.jns.2016.10.025.

98. Chen M., Ona V. O., Li M., Ferrante R. J., Fink K. B., Zhu S., Bian J., Guo L., Farrell L. A., Hersch S. M., Hobbs W., Vonsattel J. P., Cha J. H., Friedlander R. M. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med. 2000; 6 (7): 797–801. doi: 10.1038/77528.

99. Zhu S., Stavrovskaya I. G., Drozda M., Kim B. Y., Ona V., Li M., Sarang S., Liu A. S., Hartley D. M., Wu D. C., Gullans S., Ferrante R. J., Przedborski S., Kristal B. S., Friedlander R. M. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature. 2002; 417 (6884): 747–8. doi: 10.1038/417074a.

100. Wang X., Zhu S., Drozda M., Zhang W., Stavrovskaya I. G., Cattaneo E., Ferrante R. J., Kristal B. S., Friedlander R. M. Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington's disease. Proc Natl Acad Sci U S A. 2003; 100 (18): 10483–10487. doi: 10.1073/pnas.1832501100.

101. Mitroshina E. V., Vedunova M. V. The role of oxygen homeostasis and the HIF-1 factor in the development of neurodegeneration. Int J Mol Sci. 2024; 25 (9): 4581. doi: 10.3390/ijms25094581.

102. Ataie-Kachoie P., Pourgholami M. H., Bahrami-B F., Badar S., Morris D. L. Minocycline attenuates hypoxia-inducible factor-1α expression correlated with modulation of p53 and AKT/mTOR/p70S6K/4E-BP1 pathway in ovarian cancer: in vitro and in vivo studies. Am J Cancer Res. 2015; 5 (2): 575–88.

103. Cinelli M. A., Do H. T., Miley G. P., Silverman R. B. Inducible nitric oxide synthase: regulation, structure, and inhibition. Med Res Rev. 2020; 40 (1): 158–189. doi: 10.1002/med.21599.

104. McLarnon J. G. Glial-derived neuroinflammation induced with amyloidbeta-peptide plus fibrinogen injection in rat hippocampus. Curr Alzheimer Res. 2023; 20 (7): 515–522. doi: 10.2174/1567205020666230912113501.

105. Milano S., Arcoleo F., D'Agostino P., Cillari E. Intraperitoneal injection of tetracyclines protects mice from lethal endotoxemia downregulating inducible nitric oxide synthase in various organs and cytokine and nitrate secretion in blood. Antimicrob Agents Chemother. 1997; 41 (1): 117–121. doi: 10.1128/AAC.41.1.117.

106. Huang T. Y., Chu H. C., Lin Y. L., Lin C. K., Hsieh T. Y., Chang W. K., Chao Y. C., Liao C. L. Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases. Toxicol Appl Pharmacol. 2009; 237 (1): 69–82. doi: 10.1016/j.taap.2009.02.026.

107. Czabotar P. E., Garcia-Saez A. J. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol. 2023; 24 (10): 732–748. doi: 10.1038/s41580-023-00629-4.

108. Wang J., Wei Q., Wang C. Y., Hill W. D., Hess D. C., Dong Z. Minocycline up-regulates Bcl-2 and protects against cell death in mitochondria. J Biol Chem. 2004; 279 (19): 19948–19954. doi: 10.1074/jbc.M313629200.

109. Yong V. W., Power C., Forsyth P., Edwards D. R. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci. 2001; 2 (7): 502–511. doi: 10.1038/35081571.

110. Lau A. C., Duong T. T., Ito S., Wilson G. J., Yeung R. S. Inhibition of matrix metalloproteinase-9 activity improves coronary outcome in an animal model of Kawasaki disease. Clin Exp Immunol. 2009; 157 (2): 300–309. doi: 10.1111/j.1365-2249.2009.03949.x.

111. Wu Y., Chen Y., Wu Q., Jia L., Du X. Minocycline inhibits PARP 1 expression and decreases apoptosis in diabetic retinopathy. Mol Med Rep. 2015; 12 (4): 4887–4894. doi: 10.3892/mmr.2015.4064.

112. Kempuraj D., Thangavel R., Natteru P. A., Selvakumar G. P., Saeed D., Zahoor H., Zaheer S., Iyer S. S., Zaheer A. Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine. 2016; 1 (1): 1003.

113. Solomon A., Rosenblatt M., Li D. Q., Liu Z., Monroy D., Ji Z., Lokeshwar B. L., Pflugfelder S. C. Doxycycline inhibition of interleukin-1 in the corneal epithelium. Invest Ophthalmol Vis Sci. 2000; 41 (9): 2544–2557.

114. Amin R., Quispe C., Docea A. O., Ydyrys A., Kulbayeva M., Durna Daştan S., Calina D., Sharifi-Rad J. The role of Tumour Necrosis Factor in neuroinflammation associated with Parkinson's disease and targeted therapies. Neurochem Int. 2022; 158: 105376. doi: 10.1016/j.neuint.2022.105376.

115. Teismann P., Tieu K., Choi D. K., Wu D. C., Naini A., Hunot S., Vila M., Jackson-Lewis V., Przedborski S. Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. Proc Natl Acad Sci USA. 2003; 100 (9): 5473–5478. doi: 10.1073/pnas.0837397100.

116. Li C. H., Cheng Y. W., Liao P. L., Yang Y. T., Kang J. J. Chloramphenicol causes mitochondrial stress, decreases ATP biosynthesis, induces matrix metalloproteinase-13 expression, and solid-tumor cell invasion. Toxicol Sci 2010; 116: 140–150. https://doi.org/10.1093/toxsci/kfq085.

117. Loeb M. B., Molloy D. W., Smieja M., Standish T., Goldsmith C. H., Mahony J., Smith S., Borrie M., Decoteau E., Davidson W., McDougall A., Gnarpe J., O'Donnell M., Chernesky M. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer's disease. J Am Geriatr Soc. 2004; 52 (3): 381–387. doi: 10.1111/j.1532-5415.2004.52109.x.

118. Molloy D. W., Standish T. I., Zhou Q., Guyatt G.; DARAD Study Group. A multicenter, blinded, randomized, factorial controlled trial of doxycycline and rifampin for treatment of Alzheimer's disease: the DARAD trial. Int J Geriatr Psychiatry. 2013; 28 (5): 463–470. doi: 10.1002/gps.3846.

119. Sheng S., Zhao S., Zhang F. Insights into the roles of bacterial infection and antibiotics in Parkinson's disease. Front Cell Infect Microbiol. 2022; 12: 939085. doi: 10.3389/fcimb.2022.939085.

120. Gao L., Shuai Y., Wen L., Zhang H., Zhang Y., Zhang X. Benefit and safety of antibiotics for Alzheimer's disease: Protocol for a systematic review and meta-analysis. Medicine (Baltimore). 2022; 101 (47): e31637. doi: 10.1097/MD.0000000000031637.

121. Perry E. A., Bennett C. F., Luo C., Balsa E., Jedrychowski M., O'Malley K. E., Latorre-Muro P., Ladley R. P., Reda K., Wright P. M., Gygi S. P., Myers A. G., Puigserver P. Tetracyclines promote survival and fitness in mitochondrial disease models. Nat Metab. 2021; 3 (1): 33–42. doi: 10.1038/s42255-02000334-y.

122. Мазунин И. О., Володько Н. В. Митохондрии: жизнь в клетке и ее последствия. Природа. 2010; 10: 3–14.


Рецензия

Для цитирования:


Кисиль ОВ, Зверева МЭ, Олсуфьева ЕН. Альтернативный терапевтический потенциал антибиотиков, ингибирующих бактериальную трансляцию, как регуляторов митохондриальной дисфункции. Антибиотики и Химиотерапия. 2025;70(7-8):74-91. https://doi.org/10.37489/0235-2990-2025-70-7-8-74-91. EDN: WMUGXT

For citation:


Kisil OV, Zvereva MI, Olsufyeva EI. Alternative Therapeutic Potential of Antibiotics Inhibiting Bacterial Translation as Regulators of Mitochondrial Dysfunction. Antibiotiki i Khimioterapiya = Antibiotics and Chemotherapy. 2025;70(7-8):74-91. (In Russ.) https://doi.org/10.37489/0235-2990-2025-70-7-8-74-91. EDN: WMUGXT

Просмотров: 8


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)