Oral Cephalosporin Dosage Forms: Advantages of Cefixime in Capsule Form
https://doi.org/10.37489/0235-2990-2025-70-7-8-101-106
EDN: VBRYLY
Abstract
Cephalosporins are important agents in the treatment of a wide range of bacterial infections. Since the isolation of their first representative in 1945, they have become widespread both in local treatment of infections and in complex treatment in hospitals. A special place among cephalosporins is occupied by a representative of their third generation, cefixime. It is not only the first semi-synthetic, orally active, and effective antibiotic, but it also demonstrates remarkable antibacterial activity against a wide range of bacterial strains. The choice of dosage form for oral administration of cefixime remains relevant to this day. A rather modest range of cephalosporin antibiotics in capsule form and cefixime in oral forms is sold on the Russian market in 2025. Despite the potential material costs in production, capsules containing cefixime as an active pharmaceutical substance may be eligible candidates for the treatment of a wide range of bacterial infections due to a number of advantages of this particular dosage form. The review presents brief information about cephalosporins (history of discovery, classification, spectrum of action, scheme of semi-synthetic synthesis, etc.), as well as advantages and disadvantages of oral capsule dosage form. Also, the state of the Russian pharmaceutical market regarding registered capsule dosage forms based on cephalosporins and, in general, oral dosage forms based on a representative of class 3 cephalosporins, cefixime, had been analyzed.
About the Authors
E. V. KheifetsRussian Federation
Evgenii V. Kheifets — 3rd year postgraduate student at Department of Biotechnology and Industrial Pharmacy, MIREA — Russian Technological University (Lomonosov Institute of Fine Chemical Technologies).
Moscow
Competing Interests:
none
A. V. Panov
Russian Federation
Aleksei V. Panov — Ph. D. in Chemistry, Associate Professor at Department of Biotechnology and Industrial Pharmacy, MIREA — Russian Technological University (Lomonosov Institute of Fine Chemical Technologies).
Moscow
Competing Interests:
none
References
1. Dhruvi D., Mittal I. A. Comprehensive review of cephalosporin antibiotics: pharmacokinetic/pharmacodynamic considerations, extended infusion strategies, and clinical outcomes. PEXACY International Journal of Pharmaceutical Science. 2025; 4 (1): 1–22. doi: 10.5281/zenodo.14647689.
2. Dulhunty J. M., Roberts J. A. Lipman J., BLING III Study Investigators. continuous vs intermittent β-lactam antibiotic infusions for sepsis — reply. JAMA. 2025; 333 (2): 174–175. doi: 10.1001/jama.2024.23275.
3. Marshall W. F., Blair J. E. The cephalosporins. Mayo Clin Proc. 1999; 74 (2): 187–195. doi: 10.4065/74.2.187.
4. Vilvanathan S. Penicillins, Cephalosporins, and other β-lactam antibiotics. In: Paul A., Anandabaskar N., Mathaiyan J., Raj G. M. Introduction to basics of pharmacology and toxicology. Springer, Singapore. 2021; 821–834. doi: 10.1007/978-981-33-6009-9_54.
5. Bui T., Patel P., Preuss C. V. Cephalosporins. 2024, In: StatPearls [Internet]. treasure island (FL): StatPearls publishing; 2025 Jan. PMID: 31855361.
6. Kim Y., Hol W. G. J. Structure of cephalosporin acylase in complex with glutaryl-7-aminocephalosporanic acid and glutarate: insight into the basis of its substrate specificity. Chem Biol. 2001; 8 (12): 1253–1264. doi: 10.1016/s1074-5521 (01)00092-8.
7. Rasyidah M., Sismindari S., Purwanto P. Cephalosporin C acylase: important role, obstacles, and strategies to optimize expression in E. coli. Journal of Applied Pharmaceutical Science. 2024: 1–10. doi: 10.7324/japs.2024.179954.
8. Sun H., Liu T., Luo H., Nie Z., Chang Y., Yu H. et al. Optimization of cephalosporin c acylase expression in Escherichia coli by high-throughput screening a constitutive promoter mutant library. Appl Biochem Biotechnol. 2021; 193 (4): 1056–1071. doi: 10.1007/s12010-020-03482-9.
9. Tan Q., Qiu J., Luo X., Zhang Y., Liu Y., Chen Y. et al. Progress in one-pot bioconversion of cephalosporin c to 7-aminocephalosporanic acid. Curr Pharm Biotechnol. 2018; 19 (1): 30–42. doi: 10.2174/1389201019666180509093956.
10. Lin X., Kück U. Cephalosporins as key lead generation beta-lactam antibiotics. Appl Microbiol Biotechnol. 2022; 106 (24): 8007–8020. doi: 1007/s00253-022-12272-8.
11. Hutchings M. I., Truman A. W., Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. 2019; 51: 72–80. doi: 10.1016/j.mib.2019.10.008.
12. Gröger H., Pieper M., König B., Bayer T., Schleich H. Industrial landmarks in the development of sustainable production processes for the β-lactam antibiotic key intermediate 7-aminocephalosporanic acid (7-ACA). Sustainable Chemistry and Pharmacy. 2017; 5: 72–9. doi: 10.1016/j.scp.2016.08.001.
13. Bruyndonckx R., Adriaenssens N., Versporten A., Hens N., Monnet D. L., Molenberghs G. et al. Consumption of antibiotics in the community, European Union/European Economic Area, 1997–2017. J Antimicrob Chemother. 2021; 76 (Suppl 2): 7–13. doi: 10.1093/jac/dkab172.
14. Walsh T. L., Taffe K., Sacca N., Bremmer D. N., Sealey M. L., Cuevas E. et al. Risk factors for unnecessary antibiotic prescribing for acute respiratory tract infections in primary care. Mayo Clin Proc Innov Qual Outcomes. 2020; 4 (1): 31–39. doi: 10.1016/j.mayocpiqo.2019.09.004.
15. Mahdi Z. H., Maraie N. K., Al-juboori Z. A. Application of liquisolid technology to enhance the dissolution of cefixime from its oral capsules. International Journal of Applied Pharmaceutics. 2018; 10 (5): 214–219. doi: 10.22159/ijap.2018v10i5.28359.
16. Registr lekarstvennykh sredstv Rossii [Internet]. [Dostup ot: 01.04.2025]. Dostup po ssylke: https://www.rlsnet.ru/pharm-groups/cefalosporiny-92. (in Russian)
17. Hoag S. W. Capsules dosage form: formulation and manufacturing considerations. In: Yihong Q., Yisheng C., Zhang G. G. Z., Yu L. et al. Developing solid oral dosage forms: pharmaceutical theory and practice, second edition. Elsevier Inc. 2017; 723–747. doi: 10.1016/B978-0-12802447-8.00027-3.
18. Laha B., Sarkar T., Seth S. Advances in solid dosage forms. In: Nayak A. K., Sen K. K. Physico-chemical aspects of dosage forms and biopharmaceutics. 2024; 407–445. doi: 10.1016/b978-0-323-91818-3.00022-0.
19. Sohail Arshad M., Zafar S., Yousef B., Alyassin Y., Ali R., AlAsiri A. et al. A review of emerging technologies enabling improved solid oral dosage form manufacturing and processing. Adv Drug Deliv Rev. 2021; 178: 113840. doi: 10.1016/j.addr.2021.113840.
20. Savenkova M. S. Cephalosporins: history of the issue, classification, indications for use of parenteral and oral forms. Pediatrics. Consilium Medicum. 2012; 4: 56–60. (in Russian)
21. Panggabean S. N., Retnosari R., Subhan S., Latuperissa D. Overview of antibiotic prescribing based on aware category at fatmawati hospital in the period of May 2024 — November 2024. Eduvest — Journal of Universal Studies. 2025; 5 (3): 3339–3348. doi: 10.59188/eduvest.v5i3.50291.
22. Ajmal M., Zamir A., Rehman A. U., Imran I., Saeed H., Majeed A. et al. Clinical pharmacokinetics of cefixime: a systematic review. Xenobiotica. 2023; 53 (3): 149–162. doi: 10.1080/00498254.2023.2217265.
23. Bhavana P., Reddy Dr M. S. formulation and evaluation of fast-dissolving tablets of losartan potassium using co-processed excipients and statistical optimisation using central composite design. International Journal of Research Publication and Reviews. 2023; 4 (12): 3161–3174. doi: 10.55248/gengpi.4.1223.123526.
24. Golub A. V. Oral Third-Generation Cephalosporins in Current Outpatient Clinical Practice. Clinical Microbiology and Antimicrobial Chemotherapy. 2015; 17 (1): 18–23. (in Russian)
25. Asiri Y. A., Al-Said M. S., Al-Khamis K. I., Niazy E. M., El-Sayed Y. M., AlRashood K. A. et al. Comparative bioavailability study of cefixime (equivalent to 100 mg/5 ml) suspension (Winex vs Suprax) in healthy male volunteers. Randomized Controlled Trial. Int J Clin Pharmacol Ther. 2005; 43 (10): 499–504. doi: 10.5414/cpp43499.
26. Tanvir S. B., Qasim S. S. B., Shariq A., Najeeb S. Systematic review and meta-analysis on efficacy of cefixime for treating gonococcal infections. Int J Health Sci. 2018; 12 (5): 90–100.
27. Ali F. H., Mohammed D. H. Spectrophotometric determination of cefixime using hydralazine as coupling reagent. Int J Health Sci. 2022; 14487–14497. doi: 10.53730/ijhs.v6ns2.8795.
28. Mahmood A., Khan L., Ijaz M., Nazir I., Naseem M., Tahir M. A. et al. Enhanced intestinal permeability of cefixime by self-emulsifying drug delivery system: in-vitro and ex-vivo characterization. Molecules. 2023; 28 (6): 2827. doi: 10.3390/molecules28062827.
29. Purohit D. C., Rawal K. D., Patel K., Patel C. N. A comprehensive review on analytical method development and validation for cefixime in pharmaceutical dosage form. W J Pharm Pharm Sci. 2024; 13 (2): 1695–1708. doi: https://doi.org/10.20959/wjpps20242-26627.
30. Kzar T. T., Rasheed A. S., Hassan M. J. M. Optimization of hydrophilic interaction chromatography method for determination of Cefixime in some pharmaceutical preparations using HPLC coupled with UV detection. Plant Archives. 2020; 20 (2): 4356–4360.
31. Faulkner R. D., Sia L. L., Look Z. M., Barone J. S., Forbes S. J., Weiss A. I. et al. Bioequivalency of solid oral dosage forms of cefixime. Int J Pharm. 1988; 43 (1–2): 53–58. doi: 10.1016/0378-5173(88)90058-0.
Review
For citations:
Kheifets EV, Panov AV. Oral Cephalosporin Dosage Forms: Advantages of Cefixime in Capsule Form. Antibiotiki i Khimioterapiya = Antibiotics and Chemotherapy. 2025;70(7-8):101-106. (In Russ.) https://doi.org/10.37489/0235-2990-2025-70-7-8-101-106. EDN: VBRYLY















































