Preview

Антибиотики и Химиотерапия

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Биологически активные нерибосомальные пептиды.I. Нерибосомальные антибиотики полипептиды

Полный текст:

Аннотация

Приводятся данные по описанию новых за последние 10-15 лет антибиотиков полипептидов, а также новые данные исследований известных антибиотиков, касающиеся механизма действия и резистентности к ним микроорганизмов.

Об авторах

Т. И. Орлова
Московский государственный университет им. М.В. Ломоносова
Россия


В. Г. Булгакова
Московский государственный университет им. М.В. Ломоносова
Россия


А. Н. Полин
Московский государственный университет им. М.В. Ломоносова
Россия


Список литературы

1. von Döhren H., Dieckmann R., Pavela-Vrancic M. The nonribosomal code. Chem Biol 1999; 6: 10, 273-279.

2. Hancock R.E.W., Chapple D.S. Peptide antibiotics. Antimicrob Agents Chemother 1999; 43: 6: 1317-1323.

3. Grünewald Y., Marahid M.A. Chemoenzymatic and tample-directed synthesis of bioactive macrocyclic peptides. Microbiol Mol Biol Revs 2006; 70: 1: 121-146.

4. Duitman E.H., Hamoen L.W., Rembold M. et al. The mycosubtilin synthetase of Bacillus subtilis ATCC 6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. PNAS 1999; 96: 23: 13294-13299.

5. Bender C.L., Abarcon-Chaide F. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Revs 1999; 63: 2: 266-292.

6. Chiba H., Agematu H., Dobashi K., Yoshioka T. Rhodopeptides, novel cyclic tetrapeptides with antifungal activities from Rhodococcus sp. J Antibiot 1999; 52: 8: 700-709.

7. Kunze B., Böhlendorf B., Reichenbach H., Höfle G. Pedein A and B: production, isolation, structure elucidation and biological properties of new antifungal cyclopeptides from Chondromyces pediculatus (Myxobacteria). J Antibiot 2008; 61: 1: 18-26.

8. Bormann C., Lauer B., Kâlmânczhelyi A. Novel nikkomycins Lx and Ly produced by genetically engineered. J Antibiot 1999; 52: 6: 582-585.

9. Mukhopadhyay T., Roy K., Bhat J. et al. Deoxymulendocandin, a new echinocandin type antifungal antibiotic. J Antibiot 1992; 45: 5: 618- 623.

10. Wu C.-Y., Chen C.-L., Lee Y.-H. et al. Nonribosomal synthesis of an enzyme complex formed by fengycin synthetases. J Biol Chem 2007; 282: 8: 5608-5621.

11. Balibar C., Vallancourt F.N., Walsh C.T. Generation of D-aminoacid residues in assembly of arthrofactin by dual condensation/epimerization domens. Chem Biol 2005; 12: 11: 1189-2000.

12. Sorensen D., Nielsen T.H., Christophersen C. et al. Cyclic lipounde-capeptide amphisin from Pseudomonas sp. strain DSS73. Acta Cryst 2001; 57: 1123-1124.

13. Yu F., Zaleta-Rivera K., Zhu X. et al. Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob Agents Chemother 2007; 51: 1: 64-72.

14. Tomishima M., Ohki H., Yamada A. e al. FK463, a novel water-soluble echinocandin lipopeptide: synthesis and antufungal activity. J Antibiot 1999; 52: 7: 674-676.

15. Whiting A., Martin S. Daptomycin biosynthesis in Streptomyces roseosporus:cloning and analysis of the genes. Microbiology 2005; 151: 5: 1507-1523.

16. Mishra N.N., Yang S.-J., Sawa A. et al. Analysis of cell membrane characteristics of in vitro selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2009; 53: 6: 2312-2318.

17. van Heijenoort J. Lipid intermediates in the biosynthesis of bacterial peptidoglycan. Microbiol Mol Biol Revs 2007; 71: 4: 620-635.

18. Vértesy L., Ehlers E., Kogler H. et al. Friulimicins: novel lipopeptide antibiotics with peptidoglycan syhthesis inhibiting activity from Actinoplanes friuliensis sp.nov. II. Isolation and structural characterization. J Antibiot 2000; 53: 8: 816-827.

19. Schneider T., Gries K., Josten M. et al. The lipopeptide antibiotic friulimicin B inhibits cell wall biosynthesis through complex formation with bactoprenol phosphate. Antimicrob Agents Chemother 2009; 53: 4: 1610-1618.

20. Tanaka H., Oiwa R., Matsukura S. et al. Studies on bacterial cell wall inhibitors.X.Properties of phospho-N-acetylmuramoyl-pentapeptide-transferase in peptidoglycan synthesis of Bacillus mega-terium and its inhibition by amphomycin. J Antibiot 1982; 35: 9: 1216-1221.

21. Iwasaki H., Horii S., Asai M. et al. Enduracidin, a new antibiotic. VIII. Structures of enduracidins A and B. Chem Farm Bull 1973; 21: 6: 1184-1191.

22. Kawakami M., Nagai Y.,Fujii T., Mitsuhashi S. Anti-microbial activities of enduracidin (enramycin) in vitro and in vivo. J Antibiot 1971; 24: 9: 583-586.

23. Fang X., Tiyanont K., Zhang Y. The mechanism of action of ramoplanin and enduracidin. Mol BioSyst 2006; 2: 1: 69-76.

24. Cudic P., Kranz J.R., Behenna D.C. et al.Complexation of peptidoglycan intermediates by the lipoglycodepsipeptide antibiotic ramoplanin: minimal structural requirements for intermolecular complexation and fibril formation. PNAS 2002; 99: 11: 7384-7389.

25. Felmingham D. Towards the ideal glycopeptide. J Antimicrob Chemother 1993; 32: 5: 663-666.

26. Recktenwald J., Shawky R., Puk O. et al. Nonribosomal biosynthesis of vancomycin-type antibiotics: a heptapeptide backbone and eight peptide synthetase modules. Microbiology 2002; 148: 4: 1105-1118.

27. Zou Y., Brunzelle J.S., Nair S.K. Crystal structures of lipoglycopeptide antibiotic deacetylases: implications for the biosynthesis of A40926 and teicoplanin. Chem Biol 2008; 15: 6: 533-545.

28. Chiu H.-T., Hubbard B.K., Eide J. et al. Molecular cloning and sequence analysis of the complestatin biosynthetic gene claster. PNAS 2001; 98: 15: 8549-8553.

29. Chen H., Thomas M.G., Hubbard B.K. et al. Deoxysugars in glycopeptide antibiotics: enzymatic synthesis of TDP-L-epivancosamine in chloroeremomycin biosynthesis. Proc Natl Acad Sci USA 2000; 97: 22: 11942-11947.

30. van Wageningen A.M.A., Kirkpatrick P., Williamson D.N. et al. Sequening and analysis of genes involved in the biosynthesis of vancomycin group antibiotic. Chem Biol 2008; 15: 3: 155-162.

31. Nadkarni S.R., Patel M.V., Chatterjee S. et al. Balhimycin, a new glyсopeptide antibiotic produced by Amycolatopsis sp.Y-86, 21022. Taxonomy, production, isolation and biological activity. J Antibiot 1994; 47: 3: 334-341.

32. Gause G., Brazhnikova M., Lomakina N. et al. Eremomycin - new glycopeptide antibiotic; chemical properties and structure. J Antibiot 1989; 42: 12: 1790-1799.

33. Бердникова Т.Ф., Шашков А.С., Катруха Г.С. и др. Строение антибиотика эремомицина В. Биоорган. хим. 2009; 35: 4: 550-556.

34. Balzarini J/, Pannecougue C., De Clercq E. et al. Antiretroviral activity of semisynthetic derivatives of glycopeptide antibiotics. J Med Chem 2003; 46: 13: 2755-2764.

35. Printsevskaya S., Solovieva S., Olsufyeva E. et al. Structure-activity relationship studies of a series of antiviral and antibacterial aglycon derivatives of the glycopeptide antibiotics vancomycin, eremomycin, and dechloroeremomycin. J Med Chem 2005; 48: 11: 3885-3890.

36. Williams D.H., Grüneberg R.N. Teicoplanin. J Antimicrob Chemother 1984; 14: 5: 441-445.

37. Barna J.C.J., Williams D.H., Stone S.M. et al. Structure elucidation of the teicoplanin antibiotics. J Am Chem Soc 1984; 106: 17: 4895-4902.

38. Malabarba A., Strazzolini P., Depaoli A. et al. Teicoplanin, antibiotics from Actinoplanes teichomyceticus nov. sp. VI. Chemical degradation: physico-chemical and biological properties of acid hydrolysis products. J Antibiot 1984; 37: 9: 988-999.

39. Pallanza R., Berti M., Goldstein B. et al. Teichomycin: in vitro and in vivo evaluation in comparison to other antibiotics. J Antimicrob Chemother 1983; 11: 5: 419-425.

40. Alduina R., Piccolo L.L., D’Alia D et al. Phosphate-controlled regulator for the biosynthesis of the dalbavancin precursor A40926. J Bacteriol 2007; 189: 22: 8120-8129.

41. Goldstein B.P., Draghi D.C., Sheehan D.J. et al. Bactericidal activity and resistance development profiling of dalbavancin. Antimicrob Agents Chemother 2007; 51: 4: 1150-1154.

42. Citron D.M., Merriam C.V., Tyrrel K.L. et al. In vitro activities oframoplanin, teicoplanin, vancomycin, linezolid, bacitracin, and four other antimicrobials against intestinal anaerobic bacteria. Antimicrob Agents Chemother 2003; 47: 7: 2334-2338.

43. Reinolds P.E. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Microb Infect Dis.1989; 8: 943-950.

44. Barna J.C.J., Williams D.H. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Ann Rev Microbiol 1984; 38: 339-357.

45. Entress R.M.H., Dancer R.J., O’Brien D. et al. 19F NMR in the measurement of binding affinities of chloroeremomycin to model bacterial cell-wall surfaces that mimic Van A and Van B resistance. Chem Biol 1998: 5: 6: 329-337.

46. Beauregard D.A., Williams D.H., Gwynn M.N., Knowies D.J. Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrob Agents Chemother; 1995: 39: 3: 781-785.

47. Printsevskaya S., Pavlov A., Olsufyeva E. et al. Synthesis and mode of action of hydrophobic derivatives of the glycopeptide antibiotic eremomycin and des-(N-methyl-D-leucyl)eremomycin against glycopeptide-sensitive and -resistant bacteria. J Med Chem 2002; 45: 6: 1340-1347.

48. Chen L., Walker D., Sun B. et al. Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate. PNAS 2003; 100: 10: 5658-5663.

49. Kim S.J., Cegelski L., Preobrazhenskaya M., Schaefer J. Structures of Staphylococcus aureus cell-wall complexes with vancomycin, ere-momycin, and chloroeremomycin derivatives by 13C(19F) and 15N(19F) rotational-echo double resonance. Biochemistry 2006; 45: 16: 5235-5250.

50. Walsh C.T., Fisher S.L., Park I.-S., Wu Z. Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. Chem Biol 1996; 3: 1: 21-28.

51. Bugg T.D.H., Dutka-Malen S., Arthur M. et al. Identification of vancomycin resistance protein VanA as a D-alanine: D-alanine ligase of altered substrate specificity. Biochemistry 1991; 30: 8: 2017-2021.

52. Billot-Klein D., Gutmann L., Sablé S. et al. Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus and Enterococcus gallinarum. J Bacteriol 1994; 176: 8: 2398-2405.

53. Nagarajan R., Schabel A.A., Occolowitz J.L. et al. Synthesis and antibacterial evaluation of N-alkyl vancomycins. J Antibiot 1989; 42: 1: 63-72.

54. Cooper R.D.G., Snyder N.J., Zweisel M.J. et al. Reductive alkylation of glycopeptide antibiotics: synthesis and antibacterial activity. J Antibiot 1996; 49: 6: 575-581.

55. Biavasco F., Lupidi R., Varaldo P.E. In vitro activities of three semisynthetic amide derivatives of teicoplanin, MDL 62208, MDL62211, and MDL 62873. Antimicrob Agents Chemother 1992; 36: 2: 331-338.

56. Mapies K.R., Wheeler C., Ip E. et al. Novel semisynthetic derivative of antibiotic eremomycin active against drug-resistant gram-positive pathogens including Bacillus anthracis. J Med Chem 2007; 50: 15: 3681-3685.

57. Miroshnikova O.V., Printsevskaya S.S., Olsufyeva E.N. et al. Structure-activity relationships in the series of eremomycin carboxamides. J Antibiot 2000; 53: 3: 286-293.

58. Leadbetter M.R., Adams S.M., BazziniB. et al. Hydrophobic vancomycin derivatives with improved ADME properties discovery of telavancin (TD-6424). J Antibiot 2004; 57: 5: 326-336.

59. Hegde S.S., Skinner R., Lewis S.R. et al. Activity of telavancin against heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) in vitro and in an in vivo mouse model of bacteraemia. J Antimicrob Chemother 2010; 65: 4: 725-728.

60. Lunde C.S., Hartouni S.R., Janc J.W. et al. Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II. Antimicrob Agents Chemother 2009; 53: 8: 3375-3383.

61. Higgins D.L., Chang R., Debabov D.V. et al. Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antinicrob Agents Chemother 2005; 49: 3: 1127-1134.

62. Lunde C.S., Rexer C.H., Hartouni S.R. et al. Fluorescence microscopy demonstrates enhanced targeting of telavancin to the division septum of Staphylococcus aureus. Antimicrob Agents Chemother 2010; 54: 5: 2198-2200.

63. Allena N.E., Nicasa T.I. Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol Revs 2006; 26: 5: 511-532.

64. Kerns R., Dong S.D., Fukuzava S. et al. The role of hydrophobic substituents in the biological activity of glycopeptide antibiotics. J Am Chem Soc 2000; 122: 50: 12608-12609.

65. Belley A., Neesham-Grenon E., McKay G. et al. Oritavancin kills sta-tionary-phase and biofilm Staphylococcus aureus cells in vitro. Antimicrob Agents Chemother 2009; 53: 3: 918-925.

66. Goldstein B.P., Draghi D.C., Sheehan D.J. et al. Bactericidal activity and resistance development profiling of dalbavancin. Antimicrob Agents Chemother 2007; 51: 4: 1150-1154.

67. Candiani G., Abbondi M., Borgonovi M. et al. In vitro and in vivo antibacterial activity of BI 397, a new semi-synthetic glycopeptide antibiotic. J Antimicrob Chemother 1999; 44: 2: 179-192.

68. Heine H.S., Purcell B.K., Bassett J. Activity of dalbavancin against Bacillus anthracis in vitro and in a mouse inhalation anthrax model. Antimicrob Agents Chemother 2010; 54: 3: 991-996.

69. Lin G., Credito K., Ednie L.M., Appelbaum P.C. Antistaphylococcal activity of dalbavancin, an experimental glycopeptide. Antimicrob Agents Chemother 2005; 49: 2: 770-772.

70. Lin G., Smith K., Ednie L.M., Appelbaum P.C. Antipneumococcal activity of dalbavancin compared to other agents. Antimicrob Agents Chemother 2005; 49: 12: 5182-5184.

71. Nguyen K.T., Ritz D., Gu J.-Q. et al. Combinatorial biosynthesis of novel antibiotics related to daptomycin. PNAS 2006; 103: 46: 17462-17467.

72. Doekel S., Coëffet-Le Gal M.-F., Gu J.-Q. et al. Non-ribosomal peptide synthetase module fusions to produce derivatives of daptomycin in Streptomyces roseosporus. Microbiology 2008; 154: 9: 2872-2880.

73. Caboche S., Pupin M., Leclére V. et al. NORINE: a database of nonribosomal peptides. Nucleic Acid Res 2008; 36(Database issue): D326-D331.

74. Бибикова М.В., Пужевская Т.О., Катлинский А.В. Гифомицеты - продуценты циклодепсипептидных соединений. Антибиотики и химиотер. 2010; 55: 2-4: 35-44.


Для цитирования:


Орлова Т.И., Булгакова В.Г., Полин А.Н. Биологически активные нерибосомальные пептиды.I. Нерибосомальные антибиотики полипептиды. Антибиотики и Химиотерапия. 2011;56(3-4):57-68.

For citation:


Orlova T.I., Bulgakova V.G., Polin A.N. Biologically Active Nonribosomal Peptides.I. Nonribosamal Polypeptide Antibiotics. Antibiotics and Chemotherapy. 2011;56(3-4):57-68. (In Russ.)

Просмотров: 43


ISSN 0235-2990 (Print)