Preview

Антибиотики и Химиотерапия

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Современное состояние изучения эффективности неспецифических средств медицинской защиты in vitro и in vivo в отношении коронавируса IV генотипа, вызывающего тяжёлый острый респираторный синдром

Полный текст:

Аннотация

Результаты оценки эффективности различных фармакологических групп НМСЗ in vitro свидетельствуют о том, что ряд препаратов (велферон, алферон, бетаферон, рибавирин, лопинавир) оказались эффективными в отношении вируса ТОРС, что позволило исследователям рекомендовать их для оценки активности на лабораторных животных. Данные об изучении. эффективности фармакологических препаратов in vivo в отношении возбудителя ТОРС немногочисленны и судить об их эффективности затруднительно. Опасность скрытой циркуляции ТОРС среди диких животных в Китае обусловливает актуальность поиска новых эффективных медицинских средств защиты населения РФ в отношении этого возбудителя.

Об авторах

В. Н. Щукина
Филиал федерального государственного учреждения 48 Центральный научно-исследовательский институт Министерства обороны Российской Федерации - Вирусологический центр
Россия


С. Я. Логинова
Филиал федерального государственного учреждения 48 Центральный научно-исследовательский институт Министерства обороны Российской Федерации - Вирусологический центр
Россия


С. В. Борисевич
Филиал федерального государственного учреждения 48 Центральный научно-исследовательский институт Министерства обороны Российской Федерации - Вирусологический центр
Россия


В. П. Бондарев
Филиал федерального государственного учреждения 48 Центральный научно-исследовательский институт Министерства обороны Российской Федерации - Вирусологический центр
Россия


Список литературы

1. Revised U.S. Surveillance case definition for severe acute respiratory syndrome (SARS) and update on SARS cases - United States and worldwide, December 2003. Weekly 2003; 52: 49: 1202-1206.

2. Severe acute respiratory syndrome (SARS) in Singapore - update 2. SARS case in Singapore linked to accidental laboratory contamination. 24 September 2003. Disease Outbreak Reported. http://www.who.int/csr/don/2003_09_24/en/index.html.

3. China confirms SARS infection in another previously reported case; summary of cases to date - Update 5. 30 April 2004. http://www.who.int/csr/don/2004_04_30/en/index.html.

4. Guan Y., Zheng B.J., He Y.Q. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 2003; 302: 276-278.

5. Li W., Shi Z., Yu M. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 2005; 310: 676-679.

6. Wu Y.S., Lin W.H., Hsu J.T., Hsieh H.P. Antiviral drug discovery against SARS-CoV. Curr Med Chem 2006; 13: 17: 2003-2020.

7. Shigeta S., Yamase T. Current status of anti-SARS agents. Antivir Chemother 2005; 16: 1: 23-31.

8. Tan E.L.C., Ooi E.E., Tan H.C. et al. Inhibition of SARS coronavirus infection in vitro with clinical approved antiviral drugs. Emerg Infect Dis 2004; 10: 4: 581-586.

9. Hensley L.E., Fritz E.A., Jahrling P.B. et al. Interferon-ß 1а and SARS coronavirus replication. Emerg Infect Dis 2004; 10: 2: 317-319.

10. Paragas J., Blatt L.M., Hartman C. et al. Interferon alfacon1 is an inhibitor of SARS-coronavirus in cell-based models. Antiviral Res 2005; 66: 2-3: 99-102.

11. Spiegel M., Pichlmair A., Martinez-Sobrido L. et al. Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J Virol 2005; 79: 4: 2079-2086.

12. De Lang A., Osterhaus A.D., Haagmans B.L. Interferon-gamma and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells. Virology 2006; 353: 2: 474-481.

13. Zorzitto J., Galligan C.L., Ueng J.J., Fish E.N. Characterization of the antiviral effects of interferon-alpha against a SARS-like coronavirus infection in vitro. Cell Res 2006 16: 2: 220-229.

14. Lau Y.L., Peiris J.M. Pathogenesis of severe acute respiratory syndrome. Curr 0pin Immunol 2005; 17: 4: 404-410.

15. Koren G., King S., Knowles S., Phillips E. Ribavirin in treatment of SARS: A new trick for an old drug? Can Med Ass J 2003; 168: 10: 412-414.

16. Saijo M., Morikawa S., Fukushi S. et al. Inhibitory effect of mizoribine and ribavirin on the replication of severe acute respiratory syndrome (SARS)-associated coronavirus. Antiviral Res 2005; 66: 2-3: 159-163.

17. Cho J.H., Bernard D.L., Sidwell R.W. et al. Synthesis of cyclopentenyl carbocyclic nucleosides as potential antiviral agents against orthopoxviruses and SARS. J Med Chem 2006; 49: 3: 1140-1148.

18. Tanner J.A., Zheng B.J., Zhou J. et al. The Adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem Biol 2005; 12: 3: 303-311.

19. Zhang H.Z., Zhang H., Kemnitzer W. et al. Design and synthesis of dipeptidyl glutaminyl fluoromethyl ketones as potent severe acute respiratory syndrome coronavirus (SARS-CoV) inhibitors. J Med Chem 2006; 49: 3: 1198-1201.

20. Chen L., Gui C., Luo X., Yang Q. et al. Cinanserin is an inhibitor ofthe 3c-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J Virol 2005; 79: 11: 7095-7103.

21. Chan K.S., Lai S.T., Chu C.M. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J 2003; 9: 399-406.

22. Yazdanpanah Y., Guery B. Antiretroviral drugs in severe acute respiratory syndrome. Presse Med 2006; 35; 1: 2: 105-107.

23. Zhang X.W., Yap Y.L. Old drugs as lead compounds for a new disease? Binding analysis of SARS coronavirus main proteinase with HIV, psychotic and parasite drugs. Bioorg Med Chem 2004; 12: 10: 2517-2521.

24. Savarino A. Expanding the frontiers of existing antiviral drugs: possible effects of HIV-1 protease inhibitors against SARS and avian influenza. J Clin Virol 2005; 34: 3: 170-178.

25. Du Q.S., Sun H., Chou K.C. Inhibitor design for SARS coronavirus main protease based on «distorted key theory». Med Chem 2007; 3: 1: 1-6.

26. Gan Y.R., Huang H., Huang Y.D. et al. Synthesis and activity of an octapeptide inhibitor designed for SARS coronavirus main proteinase. Peptides 2006; 27: 4: 622-625.

27. Zhang R., Wei D.Q., Du Q.S., Chou K.C. Molecular modeling studies of peptide drug candidates against SARS. Med Chem 2006; 2: 3: 309-314.

28. Kaeppler U., Stiefl N., Schiller M. et al. A new lead for nonpeptidic active-site-directed inhibitors of the severe acute respiratory syndrome coronavirus main protease discovered by a combination of screening and docking methods. J Med Chem 2005; 48: 22: 6832-6842.

29. Lu I.L., Mahindroo N., Liang P.H. et al. Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease. J Med Chem 2006; 49: 17: 5154-5161.

30. Han D.P., Penn-Nicholson A., Cho M.W. Identification of critical determinants on ACE2 for SARS-CoV entry and development of a potent entry inhibitor. Virology 2006; 350: 1: 15-25.

31. Hoever G., Baltina L., Michaelis M. et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J Med Chem 2005; 48: 4: 1256-1259.

32. Morgenstern B., Bauer G., Chandra P. et al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003; 361: 2045-2046.

33. Yu Z., Ohtaki Y., Kai K. et al. Critical roles of platelets in lipopolysaccharide-induced lethality: effects of glycyrrhizin and possible strategy for acute respiratory distress syndrome. Int Immunopharmacol 2005; 5: 3: 571-580.

34. Chuan-hai Zh., Yi-fei W., Xin-jian Liu et al. Antiviral activity of cepharanthine against severe acute respiratory syndrome coronavirus in vitro. Chin Med J 2005; 118: 6: 493-496.

35. Fanci A.S., Touchette N.A., Folkers G.K. Emerging infections diseases: a 10-years perspective from the national institute of allergy and infections diseases. Emerg Infect Dis 2005; 11: 4: 519-525.

36. Barnard D.L., Day C.W., Bailey K. et al. Evaluation of immunomodu-lators, interferons and known in vitro SARS-CoV inhibitors for inhibition of SARS-CoV replication in BALB/c mice. Antiviral Chem Chemother 2006; 17: 5: 275-284.

37. Haagmans B.L., Kuiken T., Martina B.E., Fouchier R.A. et al. Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med 2004; 10: 290-293.

38. Barnard D.L., Day C.W., Bailey K. et al. Enhancement of the infectivity of SARS-CoV in BALB / c mice by IMP dehydrogenase inhibitors, including ribavirin. Antiviral Res. 2006; 71: 1: 53-63.

39. Чепурнов А.А., Дадаев А.А., Зубавиченко H.М. и др. Попытка получения вакцины против Тяжелого острого респираторного синдрома (ТОРС). Тез. Докл. Международной конф. «Развитие международного сотрудничества в области изучения инфекционных заболеваний». Сосновка, Новосибирская обл., Россия, 8-10 сентября 2004 г. ЦЭРИС, Новосибирск, 2004; 286.

40. Jin H., Xiao C., Chen Z. et al. Induction of Th1 type response by DNA vaccinations with N, M, and E genes against SARS-CoV in mice. Biochem Biophys Res Commun 2005; 328: 4: 979-986.

41. Faber M., Lamirande E.W., Roberts A. et al. A single immunization with a rhabdovirus-based vector expressing severe acute respiratory syndrome coronavirus (SARS-CoV) S protein results in the production of high levels of SARS-CoV-neutralizing antibodies. J Gen Virol 2005; 86: 5: 1435-1440.

42. Zhang C.H., Lu J.H., Wang Y.F. et al. Immune responses in Balb / c mice induced by a candidate SARS-CoV inactivated vaccine prepared from F69 strain. Vaccine 2005; 24: 23: 3196-3201.

43. Chen Z., Zhang L., Qin C. et al. Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J Virol 2005; 5: 79: 2678-2688.

44. Bisht H., Roberts A., Vogel L. et al. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology 2005; 334: 2: 160-165.

45. Qin E., Shi H., Tang L., Wang C. et al. Immunogenicity and protective efficacy in monkeys of purified inactivated Vero-cell SARS vaccine. Vaccine 2006; 24: 7: 1028-1034.

46. Zhou J., Wang W., Zhong Q. et al. Immunogenicity, safety, and protective efficacy of an inactivated SARS-associated coronavirus vaccine in rhesus monkeys. Ibid 2005; 23: 3202-3209.

47. Roberts A., Thomas W.D., Guarner J. et al. Therapy with a Severe Acute Respiratory Syndrome-associated coronavirus-neutralizing human monoclonal antibody reduces disease severity and viral burden in golden syrian hamsters. J Infect Dis 2006; 193: 685-692.

48. Czub M., Weingart H., Czub S. et al. Evalution of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine 2005; 23: 17-18: 2273-2279.


Для цитирования:


Щукина В.Н., Логинова С.Я., Борисевич С.В., Бондарев В.П. Современное состояние изучения эффективности неспецифических средств медицинской защиты in vitro и in vivo в отношении коронавируса IV генотипа, вызывающего тяжёлый острый респираторный синдром. Антибиотики и Химиотерапия. 2011;56(9-10):41-46.

For citation:


Shchukina V.N., Loginova S.Y., Borisevich S.V., Bonderev V.P. Present State of in vitro and in vivo Studies on Efficacy of Medical Nonspecific Protective Agents with Respect to Genotype IV Coronavirus Causing Severe Acute Respiratory Syndrome. Antibiotics and Chemotherapy. 2011;56(9-10):41-46. (In Russ.)

Просмотров: 24


ISSN 0235-2990 (Print)