Биологически активные нерибосомальные пептиды. III. Механизм биосинтеза нерибосомальных пептидов
Аннотация
Об авторах
Т. И. ОрловаРоссия
В. Г. Булгакова
Россия
А. Н. Полин
Россия
Список литературы
1. Hancock R.E.W., Chapple D.S. Peptide antibiotics. Antimicrob Agents Chemother 1999; 43: 6: 1317-1323.
2. Grüznewald Y., Marahiel M.A. Chemoenzymatic and tample-directed synthesis of bioactive macrocyclic peptides. Microbiol Mol Biol Revs 2006; 70: 1: 121-146.
3. Strieker M., Marahiel M.A. The structural diversity of acidic lipopeptide antibiotics. Chem Biochem 2009; 10: 4: 607-616.
4. Булгакова В.Г., Орлова Т.И., Полин А.Н. Устойчивость актиномицетов - продуцентов к собственным антибиотикам. Антибиотики и химиотер. 2010; 55: 1-2: 42-49.
5. Орлова Т.И., Булгакова В.Г., Полин А.Н. Биологически активные нерибосомальные пептиды. I. Нерибосомальные антибиотики полипептиды. Антибиотики и химиотер. 2011; 56: 3-4: 57-68.
6. Орлова Т.И., Булгакова В.Г., Полин А.Н. Биологически активные нерибосомальные пептиды. II. Нерибосомальные пептиды различного биологического действия. Антибиотики и химиотер. 2011; 56: 11-12.
7. Stein T., Vater J., Kruft V. et al. The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates. J Biol Chem 1996; 271: 26: 15428-435.
8. Lipmann F., Gevers W., Kleinkauf H. et al. The enzymatic synthesis of gramicidin S and tyrocidine. Adv Enzimol 1971; 35: 1-34.
9. Laland S.G., Zimmer T.L. The protein thiotemplate of mechanism of synthesis for the peptide antibiotics produced by Bacillus brevis. Essays Biochem 1973; 9: 31-57.
10. Karahashi K. Biosynthesis of small peptides. Annu Rev Biochem 1974; 43: 445-459.
11. Conti E., Stachelhaus T., Marahiel M.A., Brick P. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 1997; 16: 4174-4183.
12. Lautru S., Challis G.L. Substrate recognition by nonribosomal peptide synthetase multi-enzymes. Microbiology 2004; 150: 6: 1629-1636.
13. Hahn M., Stachelhaus T. Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains. Proc Natl Acad Sci 2004; 101: 44: 15585-15590.
14. Stachelhaus T., Mootz H.D., Marahiel M.A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 1999; 6: 8: 493-505.
15. Wu C.-Y., Chen C.-L., Lee Y.-C. et al. Nonribosomal synthesis of fengycin on an enzyme complex formed by fengycin synthetases. J Biol Chem 2007; 282: 8: 5608-5621.
16. Chiocchini C., Linne U., Stachelhaus T. In vivo biocombinatorial synthesis of lipopeptides by COM domain-mediated reprogramming of the surfactin biosynthetic complex. Chem Biol 2006; 13: 8: 899-908.
17. Stachelhaus T., Mootz H.D., Bergendahl V., Marahiel M.A. Peptide bond formation in nonribosomal peptide biosynthesis. Catalytic role of the condensation domain. J Biol Chem 1998; 273: 35: 22773-22781.
18. Kraas F.I., Helmetag V., Wittmann M. et al. Functional dissection of surfactin synthetase initiation module reveals insights into the mechanism of lipoinitiation. Chem Biol 2010; 17: 8: 872-880.
19. Lee T.V., Johnson L.J., Johnson R.D. et al. Structure of eukaryotic nonribosomal peptide synthetase adenylation domain that activates a large hydroxamate amino acid in siderophore biosynthesis. J Biol Chem 2009; 285: 4: 2415-2431.
20. Li J., Jensen S.E. Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a D-amino acid. Chem Biol 2008;15: 2: 118-127.
21. Tang G.-L., Cheng Y.-Q., Shen B. Chain initiation in the leinamycin-producing hybrid nonribosomal peptide/polyketide synthetase from Streptomyces atroolivaceus S-140. Discrete, monofunctional adenylation enzyme and peptidyl carrier protein that directly load D-alanine. J Biol Chem 2007; 282: 28: 20273-20285.
22. Conti E., Franks N.P., Brick P. Crystal structure of firefly luciferase throw light on a superfamily of adenylate-forming enzymes. Structure 1996; 4: 287-298.
23. Li L., Deng W., Song J. et al. Characterization of the saframycin a gene cluster from Streptomyces lavendulae NRRL 11002 revealing a nonribosomal peptide synthetase system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. J Bacteriol 2008; 190: 1: 251-263.
24. von Döhren H., Dieckmann R., Pavela-Vrancic M. The nonribosomal code. Chem Biol 1999; 6: R273-R279.
25. Dieckmann R., Pavela-Vrancic M., Kleinkauf H., von Döhren H. Probing the domain structure and ligand-induced conformational changes by limited proteolysis of tyrocidine synthetase. J Mol Biol 1999; 288: 129-140.
26. Challis G.L., Ravel J., Tompsend C.A. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 2000; 7: 3: 211-224.
27. Belshaw P., Walsh C.T., Stachelhaus T. Aminoacyl-CoAs as a probe of condensation domain selectivity in nonribosomal synthesis. Science 1999; 284: 486-489.
28. Balibar C.J., Vallancourt F.H., Walsh C.T. Generation of D amino acid residues in arthrofactin by dual condensation/epimerization domains. Chem Biol 2005; 12: 11: 1189-1200.
29. Schneider T.L., Shen B., Walsh C.T. Oxidase domains in epothilone and bleomycin biosynthesis: thiazoline to thiazole oxidation during chain elongation. Biochemistry 2003; 42: 32: 9722-9730.
30. Kessler N., Schuhmann H., Morneweg S. et al. The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J Biol Chem 2004; 279: 9: 7413-7419.
31. Duitman E.H., Hamoen L.W., Rembold M. et al. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Nat Acad Sci 1999; 96: 23: 13294-13299.
32. Trauger J.W., Kohli R.M., Walsh C.T. Cyclization of backbone-substituted peptides catalyzed by the thioesterase domain from the tyrocidine nonribosomal peptide synthetase. Biochemistry 2001; 40: 24: 7092-7098.
33. Robbel L., Hoyer K.M., Marahiel M.A. TioS-T-TE - a prototypical thioesterase responsible for cyclodimerization of the quinoline- and quinoxaline-type class of chromodepsipeptides. FEBS J 2009; 276: 6: 1641-1653.
34. Hoyer K.M., Mahiert C., Marahiel M.A. The iterative gramicidin S thioesterase catalyzed peptide ligation and cyclization. Chem Biol 2006; 14: 1: 13-22.
35. Tseng C.C., Bruner S.D., Kohli R.M. et al. Characterization of the surfactin synthetase C-terminal thioesterase domain as a cyclic depsipeptide synthase. Biochemistry. 2002; 41: 45: 13350-13359.
36. Kato H., Tsuji K., Harada K. Microbial degradation of cyclic peptides produced by bacteria. Microbial degradation of cyclic peptides. J Antibiot 2009; 62: 4: 181-190.
37. Ridley C.P., Lee H.Y., Khosla C. Evolution of polyketide synthases in bacteria. PNAS 2007; 105: 12: 4595-4600.
38. Tsuge K., Inoue S., Ano T. et al. Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin A producer. Antimicrob Agents Chemother 2005; 49: 11: 4541-4648.
39. Lawrence D.P., Kroken S., Pryor B.M., Arnold A.E. Interkingdom gene transfer of a hybrid NPS/PKS from bacteria to filamentous Ascomycota. PLoS One 2011; 6: 11: e28231.
40. Шестаков С.В. Как происходит и чем лимитируется горизонтальный перенос генов у бактерий. Экологическая генетика 2007; 5: 2: 12-24.
41. Walsh C.T. Combinatorial biosynthesis of antibiotics: challenges and opportunities. Chem BioChem 2002; 3: 2-3: 124-134.
42. Du L., Shen B. Biosynthesis of hybrid peptide-polyketide natural products. Curr Opin Drug Discov Devel 2001; 4: 2: 215-228.
43. Shen B., Du L., Sanchez C. et al. The biosynthetic gene claster for the anticancer drug bleomycin from Streptomyces verticillusATCC15003 as a model for hybrid peptide-polyketide natural product biosynthesis. J Ind Microbiol Biotechnol 2001; 27: 6: 378-385.
44. Shen B., Du L., Sanchez C. et al. Cloning and characterization of the bleomycin biosynthetic gene claster from Streptomyces verticillus ATCC15003. J Nat Prod 2002; 65: 3: 422-431.
45. Doekel S., Coëffet-LeGal M.-F., Gu J.-Q. et al. Non-ribosomal peptide synthetase module fusions to produce derivatives of daptomycin in Streptomyces roseosporus. Microbiology 2008; 154: 9: 2872-2880.
46. Miao V., Coëffet-LeGal M.-F., Brian P. et al. Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene claster and revision of peptide stereochemistry. Microbiology 2005; 151: 5: 1507-1523.
47. Müller C., Nolden S., Gabhardt P. et al. Sequencing and analysis of the biosynthetic gene claster of the lipopeptide antibiotic friulimycin in Actinoplanes friuliensis. Antimicrob Agents Chemother 2007; 51: 3: 1028-1037.
48. Guenzi E., Galli G., Grgurina I. et al. Characterization of the syringomycin synthetase gene claster. A link between prokaryotic and eukariotic peptide synthetases. J Biol Chem 1998; 273: 49: 32857-32863.
49. Zhang J.H., Quigley N.B., Gross D.C. Analysis of the syrB and syrC genes of Pseudomonas syringaepv. syringaeindicates that syringomycin is synthesized by a thiotemplate mechanism. J Bacteriol 1995; 177: 14: 4009-4020.
50. Kaysser L., Tang X., Wemakor E. et al. Identification of a napsamycin biosynthesis gene claster by genome mining. Chem BioChem 2011; 12: 477-487.
51. Cheng Y.-Q., Yang M., Matter A.M. Characterization of a gene claster responsible for the biosynthesis of anticancer agent FK228 in Chromobacterium violaceum No.968. Appl Environ Microbiol 2007; 73: 11: 3460-3469.
52. Wesener S.R., Potharia V.Y., Cheng Y.-Q. Reconstitution of the FK228 biosynthetic pathway reveals cross talk between modular polyketide synthases and fatty acid synthase. Appl Environ Microbiol 2011; 77: 4: 1501-1507.
53. Cheng Y.-Q., Tang G.-L., Shen B. Identification and localization of the gene claster encoding biosynthesis of the antitumor macrolactam leinamycin in Streptomyces atroolivaceus S-140. J Bact 2002; 184: 24: 7013-7024.
54. Tang G.-L., Cheng Y.-Q., Shen B. Leinamycin biosynthesis revealing unprecedented architectural complexity for a hybrid polyketide synthase and nonribosomal peptide synthetase. Chem Biol 2004; 11: 1: 33-45.
55. Katz E., Weissbach H. Biosynthesis of the actinomycin chromophore. Enzymatic conversation of 4-methyl-3-hydroxy-antranilic acid to actinocin. J Biol Chem 1962; 237: 882-886.
56. Keller U., Lang M., Crnovcic I. et al. The actinomycin biosynthetic gene claster of Streptomyces chrysomallus: a genetic hall of mirrors for synthesis of a molecule with mirror symmetry. J Bacteriol 2010; 192: 10: 2583-2595.
57. Foster I.J.W., Katz E. Control of actinomycin D biosynthesis in Streptomyces parvulus: regulation of tryptophan oxygenase activity. J Bacteriol 1981; 148: 3: 670-677.
58. Perlman D., Otani S., Perlman K., Walker V. 7-Hydroxy-4-methylkynurenin as an intermediate in actinomycin biosynthesis. J Antibiot 1973; 26: 5: 289-296.
59. Schmidt-Kastner G. Über neue biosynthetische actinomycine. Medizin und chemie 1956; 5: 463-476.
60. Егоров Н.С., Силаев А.Б., Катруха Г.С. и др. Антибиотики-полипептиды. 1987; 159-204.
61. Шапошников В.H., Нефелова М.В., Орлова Т.И. и др. Образование новых фракций аурантина и изучение их химических и биологических свойств. ДАН 1962; 147: 6: 1476-1479.
62. Соколов Ю.H., Кучкарев Р.Н. Отчет о результатах кооперированного клинического изучения нового противоракового антибиотика актинолевалина (Ау7) В кн. Химиотерапия опухолей в СССР. 1972; 15-16: 105-113.
63. Mason K., Katz E., Mauger A. Studies on the biological activities of actinomycins Z1 and Z5. Arch Biochem Biophys 1974; 160: 2: 402-411.
64. Arai T., Yazawa K., Takahashi K. et al. Directed biosynthesis of new saframycin derivatives with resting cells of Streptomyces lavendulae. Antimicrob Agents Chemother 1985; 28: 1: 5-11.
65. Eppelmann K., Doekel S., Marahiel M.A. Engineered biosynthesis of the peptide antibiotic bacitracin in the surrogate host Bacillus subtilis. J Biol Chem 2001; 276: 37: 34824-34831.
66. Gruenewald S., Mootz H.O., Stehmeter P., Stachelhaus T. In vivo production of artificial nonribosomal peptide products in the heterologous host Escherichia coli. Appl Environ Microbiol 2004; 70: 6: 3282-3291.
67. de Ferra F., Rodrigues F., Tortora O. et al. Engineering of peptide synthetases. Key role of the thioesterase-like domain for efficient production of recombinant peptides. J Biol Chem 1997; 272: 40: 25304-25309.
68. Grünewald J., Sieber S.A., Mahlert C. et al. Synhesis and derivatization of daptomycin: a chemoenzymatic route to acidic lipopeptide antibiotics. J Amer Chem Soc 2004; 126: 51: 17025-17031.
69. Grünewald J., Sieber S.A., Marahiel M.A. Chemo- and regioselective peptide cyclization triggered by the N-terminal fatty acid chain length: the recombinant cyclase of the calcium-dependent antibiotic from Streptomyces coelicolor. Biochemistry 2004; 43: 10: 2915-2925.
70. Alexander D.C., Rock J., He X. et al. Development of a genetic system for combinatorial biosynthesis of lipopeptides in Streptomyces fradiae and heterologous expression of the A54145 biosynthesis gene claster. Appl Environ Microbiol 2010; 76: 20: 6877-6887.
71. Nguyen K.T., He X., Alexander D.C. et al. Genetically engineered lipopeptide antibiotics related to A54145 and daptomycin with improved properties. Antimicrob Agents Chemother 2010; 54: 4: 1404-1413.
72. Nguyen K.T., Ritz D., Gu J.-Q. et al. Combinatorial biosynthesis of novel antibiotics related to daptomycin. PNAS 2006; 103: 46: 17462-17467.
Рецензия
Для цитирования:
Орлова Т.И., Булгакова В.Г., Полин А.Н. Биологически активные нерибосомальные пептиды. III. Механизм биосинтеза нерибосомальных пептидов. Антибиотики и Химиотерапия. 2012;57(7-8):43-54.
For citation:
Orlova T.I., Bulgakova V.G., Polin A.N. Biologically Active Nonribosomal Peptides. III. Mechanism of Biosynthesis of Nonribosomal Peptides. Antibiotics and Chemotherapy. 2012;57(7-8):43-54. (In Russ.)