О биоплёнках стрептомицетов. I. Распространение и формирование
Аннотация
Об авторах
К. А. ВиноградоваРоссия
В. Г. Булгакова
Россия
А. Н. Полин
Россия
П. А. Кожевин
Россия
Список литературы
1. Николаев Ю.А., Плакунов В.К. Биоплёнка - «город микробов» или аналог многоклеточного организма? Микробиология 2007; 76: 2: 149-163.
2. Karatan E., Watnic P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009; 73: 2: 310-347.
3. Lazar V. Quorun sensing in biofilms - how to destroy the bacterial citadels or cohesion power? Anaerobe 2011; 17: 6: 280-285.
4. Максимова Ю.Г. Микробные биоплёнки в биотехнологических процессах. Биотехнология 2013; 4: 9-23.
5. Vega L.M., Alvarez P.J., McLean R.J.C. Bacterial signaling ecology and potential applications during aquatic biofilm construction. Microb Ecol 2014; 68: 1: 24-34.
6. Claessen D., Rozen D.E., Kuipers O.P. et al. Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Revs. Microbiol 2014; 12: 2: 115-124.
7. Плакунов В.К., Журина М.В., Беляев С.С. Устойчивость нефтеокисляющего микроорганизма, Dietzia sp., к гиперосмотическому шоку в реконструированных биоплёнках. Микробиология 2008; 77: 5: 591-589.
8. Гинцбург А.Л., Романова Ю.М. Бактериальные биоплёнки как естественная форма существования бактерий в окружающей среде и организме хозяина. Журн. микробиол. эпидемиол. иммунобиол. 2011; 3: 99-109.
9. Мальцев С.В., Мансурова Г.Ш. 2011. Что такое биоплёнка? 2011. http://pmarchive.ru/chto-takoe-bioplenka
10. Flores-Encarnation M., Gonzalez-Gutierrez J.Y., de la Rosa J.L.M. et al. The bacterial biofilm and importance to human health. Basic Res J Med Clin Sci 2014; 3: 4: 28-32.
11. Quintana E.T., Wierzbicka K., Mackiewicz P. et al. Streptomyces sudanensis sp. nov., a new pathogen isolated from patients with actinomycetoma. Antonie van Leeuwenhoek 2008; 93: 3: 305-313.
12. Kirby R., Sangal V., Tucker N.P. et al. Draft genome sequence of the human pathogen Streptomyces somaliensis, a significant cause of actinomycetoma. J Bacteriol 2012; 194: 13: 3544-3545.
13. Shanmughapriya S., Francis A.L., Kavitha S., Natarajaseenivasan K. In vitro actinomycete biofilm development and inhibition by polyene antibiotic, nystatin, on IUD copper surfaces. Biofouling 2012; 28: 9: 929-935.
14. Scheerer S., Ortega-Morales O., Gaylarde C. Microbial deterioration of stone monuments - an updated overview. Adv Appl Microbiol 2009; 66: 97-139.
15. Dakal T.C., Cameotra S.S. Microbially induced deterioration of architectural heritages: routes and mechanisms involved. Environ Sci Eur 2012; 24: 36: 1-13.
16. Lupan I., Popescu O. Metagenomics and future perspectives for biodeterioration and biodegradation studies. Annals of RSCB 2012; 17: 2: 37-42.
17. Gaylarde Ch.C., Gaylarde P.M. A соmparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int Biodeterioration and Biodegradation. 2005; 55: 2: 131-139.
18. Ciferri O. Microbial degradation of paintings. Appl Envir Microbiol 1999; 65: 9: 879-885.
19. Groth I., Saiz-Jimenez C. Actinomycetes in hypogean environments. Geomicrobiol J 1999; 16: 1: 1-8.
20. Suihko M.L., Alacomi H.L., Gorbushina A. et al. Characterization of aerobic bacterial and fungal microbiota on surfaces of historic Scottish monuments. Syst Appl Microbiol 2007; 30: 6: 494-508.
21. Albertano P., Urzi C. Structural interaction among epilithic cyanobacteria and heterotrophic microorganisms in Roman hypogea. Microb Ecol 1999; 38: 3: 244-252.
22. Pepe O., Sannino L., Palomba S. et al. Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches. Microbiol Res 2010; 165: 1: 21-32.
23. Sarkar S., Saha M., Roy D. et al. Enhanced production of antimicrobial compounds by three salt-tolerant actinobacterial strains isolated from the Sundarbans in a niche-mimic bioreactor. Mar Biotechnol (NY) 2008; 10: 5: 518-526.
24. Parthasarathi S., Sathya S., Bupesh G. et al. Isolation and characterization of antimicrobial compound from marine Streptomyces hygroscopi-cus BDUS 49. World J Fish Marine Sci 2012; 4: 3: 268-277.
25. Hollants J., Leliaert F., De Clerck O., Willems A. What we can learn from sushi: a review on seaweed-bacterial associations. FEMS Microbiol Ecol 2013; 83: 1: 1-16.
26. Sarkar S. Enchanced antimicrobials and esterase production associated to biofilm formation by two estuarine isolates in a novel polymethylmethacrylate conicocylindrical flask. Int J Adv Biotechnol Res 2014; 5: 2: 242-261.
27. Manivasagan P., Venkatesan J., Kim Se-K. Introduction to Marine Actinobacteria. In Marine Microbiology: Bioactive impounds and Biotechnological Applications.2013 Wiley-VCH Verlag GmbH & Co.
28. Penesyan A., Kjelleberg S., Egan S. Development of novel drugs from marine surface associated microorganisms. Mar Drugs 2010; 8: 3: 438-459.
29. Bull A.T., Stach J.E.M. Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 2007; 15: 11: 491-499.
30. Newman D.J., Cragg M.G. Natural products as sources of new drugs over the last 25 years. J. Nat Prod 2007; 70: 3: 461-477.
31. Olano C., Mendez C., Salas J.A. Antitumor compounds from marine actinomycetes. Mar Drugs 2009; 7: 2: 210-248.
32. El-Shatoury S., Mitchell J., Bahgat M., Dewedar A. Biodiversity of actin-omycetes in constructed wetland for industrial effluent treatment. Actinomycetologica 2004; 18: 1: 1-7.
33. Pometto III A.L., Demirci A., Johnson K.E. Immobilization of microorganisms on a support made of synthetic polymer and plant material. Патент US 5595893 A 1997.
34. Demirci A., Pometto III A.L., Johnson K.E. Lactic acid production in a mixed-culture biofilm reactor. Appl Environ Microbiol 1993; 59: 1: 203-207.
35. Khiyami M.A., Pometto III A.L., Brown R.C. Detoxification of corn stover and corn starch pyrolysis liquors by Pseudomonas putida and Streptomyces setonii suspended cells and plastic compost support biofilms. J Agric Food Chem 2005; 53: 8: 2978-2987.
36. Kim Y.M., Kim J.H. Formation and dispersion of mycelial pellets of Streptomyces coelicolor A3(2). J Microbiol 2004; 42: 1: 64-67.
37. Winn M., Casey E., Habimana O., Murphy C.D. Characteristic of Streptomyces griseus biofilms in continuous flow tubular reactors. FEMS Microbiol Lett.2014; 352: 2: 157-164.
38. de Jong W., Wosten Han A.B., Dijkhuizen L., Claessen D. Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol Microbiol 2009; 73: 6: 1128-1140.
39. Стрелкова E.A., Позднякова H.B., Журина М.В. и др. Роль внеклеточного полимерного матрикса в устойчивости бактериальнызх биоплёнок к экстремальным факторам среды. Микробиология 2013; 82: 2: 131-138.
40. Claessen D., Rink R., de Jong W. et al. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 2003; 17: 14: 1714-1726.
41. Flärdth K., Buttner M.J. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Revs Microbiol 2009; 7: 1: 36-49.
42. Petrácková D., Buriánková K., Tesařová E. et al. Surface hydrophobicity and roughness influences the morphology and biochemistry of streptomycetes during attached growth and differentiation. FEMS Microbiol Lett. 2013; 342: 2: 147-156.
Рецензия
Для цитирования:
Виноградова К.А., Булгакова В.Г., Полин А.Н., Кожевин П.А. О биоплёнках стрептомицетов. I. Распространение и формирование. Антибиотики и Химиотерапия. 2015;60(1-2):39-46.
For citation:
Vinogradova K.A., Bulgakova V.G., Polin A.N., Kozhevin P.A. Streptomycetes Biofilms. I. Occurrence and Formation. Antibiot Khimioter = Antibiotics and Chemotherapy. 2015;60(1-2):39-46. (In Russ.)