Preview

Антибиотики и Химиотерапия

Расширенный поиск

О биоплёнках стрептомицетов. I. Распространение и формирование

Полный текст:

Аннотация

Стрептомицеты способны формировать биоплёнки - в сообществе с другими микроорганизмами или моноплёнки. В обзоре приводятся данные относительно структуры стрептомицетных биоплёнок, этапов их формирования и механизмов адгезии к субстратам. Биоплёнки, включающие стрептомицеты, обнаруживаются в различных экосистемах в разных почвенно-климатических зонах - в почвах, в очистных системах, в морских и речных осадках, на стенах сооружений. Стрептомицеты участвуют в формировании биоплёнок в организме человека, а также на медицинских устройствах и имплантах. При этом в составе биоплёнок стрептомицеты, как и другие микроорганизмы, обладают более высокой устойчивостью к лекарственным препаратам, чем «планктонные» клетки.

Об авторах

К. А. Виноградова
Московский государственный университет им. М.В. Ломоносова
Россия


В. Г. Булгакова
Московский государственный университет им. М.В. Ломоносова
Россия


А. Н. Полин
Московский государственный университет им. М.В. Ломоносова
Россия


П. А. Кожевин
Московский государственный университет им. М.В. Ломоносова
Россия


Список литературы

1. Николаев Ю.А., Плакунов В.К. Биоплёнка - «город микробов» или аналог многоклеточного организма? Микробиология 2007; 76: 2: 149-163.

2. Karatan E., Watnic P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009; 73: 2: 310-347.

3. Lazar V. Quorun sensing in biofilms - how to destroy the bacterial citadels or cohesion power? Anaerobe 2011; 17: 6: 280-285.

4. Максимова Ю.Г. Микробные биоплёнки в биотехнологических процессах. Биотехнология 2013; 4: 9-23.

5. Vega L.M., Alvarez P.J., McLean R.J.C. Bacterial signaling ecology and potential applications during aquatic biofilm construction. Microb Ecol 2014; 68: 1: 24-34.

6. Claessen D., Rozen D.E., Kuipers O.P. et al. Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Revs. Microbiol 2014; 12: 2: 115-124.

7. Плакунов В.К., Журина М.В., Беляев С.С. Устойчивость нефтеокисляющего микроорганизма, Dietzia sp., к гиперосмотическому шоку в реконструированных биоплёнках. Микробиология 2008; 77: 5: 591-589.

8. Гинцбург А.Л., Романова Ю.М. Бактериальные биоплёнки как естественная форма существования бактерий в окружающей среде и организме хозяина. Журн. микробиол. эпидемиол. иммунобиол. 2011; 3: 99-109.

9. Мальцев С.В., Мансурова Г.Ш. 2011. Что такое биоплёнка? 2011. http://pmarchive.ru/chto-takoe-bioplenka

10. Flores-Encarnation M., Gonzalez-Gutierrez J.Y., de la Rosa J.L.M. et al. The bacterial biofilm and importance to human health. Basic Res J Med Clin Sci 2014; 3: 4: 28-32.

11. Quintana E.T., Wierzbicka K., Mackiewicz P. et al. Streptomyces sudanensis sp. nov., a new pathogen isolated from patients with actinomycetoma. Antonie van Leeuwenhoek 2008; 93: 3: 305-313.

12. Kirby R., Sangal V., Tucker N.P. et al. Draft genome sequence of the human pathogen Streptomyces somaliensis, a significant cause of actinomycetoma. J Bacteriol 2012; 194: 13: 3544-3545.

13. Shanmughapriya S., Francis A.L., Kavitha S., Natarajaseenivasan K. In vitro actinomycete biofilm development and inhibition by polyene antibiotic, nystatin, on IUD copper surfaces. Biofouling 2012; 28: 9: 929-935.

14. Scheerer S., Ortega-Morales O., Gaylarde C. Microbial deterioration of stone monuments - an updated overview. Adv Appl Microbiol 2009; 66: 97-139.

15. Dakal T.C., Cameotra S.S. Microbially induced deterioration of architectural heritages: routes and mechanisms involved. Environ Sci Eur 2012; 24: 36: 1-13.

16. Lupan I., Popescu O. Metagenomics and future perspectives for biodeterioration and biodegradation studies. Annals of RSCB 2012; 17: 2: 37-42.

17. Gaylarde Ch.C., Gaylarde P.M. A соmparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int Biodeterioration and Biodegradation. 2005; 55: 2: 131-139.

18. Ciferri O. Microbial degradation of paintings. Appl Envir Microbiol 1999; 65: 9: 879-885.

19. Groth I., Saiz-Jimenez C. Actinomycetes in hypogean environments. Geomicrobiol J 1999; 16: 1: 1-8.

20. Suihko M.L., Alacomi H.L., Gorbushina A. et al. Characterization of aerobic bacterial and fungal microbiota on surfaces of historic Scottish monuments. Syst Appl Microbiol 2007; 30: 6: 494-508.

21. Albertano P., Urzi C. Structural interaction among epilithic cyanobacteria and heterotrophic microorganisms in Roman hypogea. Microb Ecol 1999; 38: 3: 244-252.

22. Pepe O., Sannino L., Palomba S. et al. Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches. Microbiol Res 2010; 165: 1: 21-32.

23. Sarkar S., Saha M., Roy D. et al. Enhanced production of antimicrobial compounds by three salt-tolerant actinobacterial strains isolated from the Sundarbans in a niche-mimic bioreactor. Mar Biotechnol (NY) 2008; 10: 5: 518-526.

24. Parthasarathi S., Sathya S., Bupesh G. et al. Isolation and characterization of antimicrobial compound from marine Streptomyces hygroscopi-cus BDUS 49. World J Fish Marine Sci 2012; 4: 3: 268-277.

25. Hollants J., Leliaert F., De Clerck O., Willems A. What we can learn from sushi: a review on seaweed-bacterial associations. FEMS Microbiol Ecol 2013; 83: 1: 1-16.

26. Sarkar S. Enchanced antimicrobials and esterase production associated to biofilm formation by two estuarine isolates in a novel polymethylmethacrylate conicocylindrical flask. Int J Adv Biotechnol Res 2014; 5: 2: 242-261.

27. Manivasagan P., Venkatesan J., Kim Se-K. Introduction to Marine Actinobacteria. In Marine Microbiology: Bioactive impounds and Biotechnological Applications.2013 Wiley-VCH Verlag GmbH & Co.

28. Penesyan A., Kjelleberg S., Egan S. Development of novel drugs from marine surface associated microorganisms. Mar Drugs 2010; 8: 3: 438-459.

29. Bull A.T., Stach J.E.M. Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 2007; 15: 11: 491-499.

30. Newman D.J., Cragg M.G. Natural products as sources of new drugs over the last 25 years. J. Nat Prod 2007; 70: 3: 461-477.

31. Olano C., Mendez C., Salas J.A. Antitumor compounds from marine actinomycetes. Mar Drugs 2009; 7: 2: 210-248.

32. El-Shatoury S., Mitchell J., Bahgat M., Dewedar A. Biodiversity of actin-omycetes in constructed wetland for industrial effluent treatment. Actinomycetologica 2004; 18: 1: 1-7.

33. Pometto III A.L., Demirci A., Johnson K.E. Immobilization of microorganisms on a support made of synthetic polymer and plant material. Патент US 5595893 A 1997.

34. Demirci A., Pometto III A.L., Johnson K.E. Lactic acid production in a mixed-culture biofilm reactor. Appl Environ Microbiol 1993; 59: 1: 203-207.

35. Khiyami M.A., Pometto III A.L., Brown R.C. Detoxification of corn stover and corn starch pyrolysis liquors by Pseudomonas putida and Streptomyces setonii suspended cells and plastic compost support biofilms. J Agric Food Chem 2005; 53: 8: 2978-2987.

36. Kim Y.M., Kim J.H. Formation and dispersion of mycelial pellets of Streptomyces coelicolor A3(2). J Microbiol 2004; 42: 1: 64-67.

37. Winn M., Casey E., Habimana O., Murphy C.D. Characteristic of Streptomyces griseus biofilms in continuous flow tubular reactors. FEMS Microbiol Lett.2014; 352: 2: 157-164.

38. de Jong W., Wosten Han A.B., Dijkhuizen L., Claessen D. Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol Microbiol 2009; 73: 6: 1128-1140.

39. Стрелкова E.A., Позднякова H.B., Журина М.В. и др. Роль внеклеточного полимерного матрикса в устойчивости бактериальнызх биоплёнок к экстремальным факторам среды. Микробиология 2013; 82: 2: 131-138.

40. Claessen D., Rink R., de Jong W. et al. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 2003; 17: 14: 1714-1726.

41. Flärdth K., Buttner M.J. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Revs Microbiol 2009; 7: 1: 36-49.

42. Petrácková D., Buriánková K., Tesařová E. et al. Surface hydrophobicity and roughness influences the morphology and biochemistry of streptomycetes during attached growth and differentiation. FEMS Microbiol Lett. 2013; 342: 2: 147-156.


Для цитирования:


Виноградова К.А., Булгакова В.Г., Полин А.Н., Кожевин П.А. О биоплёнках стрептомицетов. I. Распространение и формирование. Антибиотики и Химиотерапия. 2015;60(1-2):39-46.

For citation:


Vinogradova K.A., Bulgakova V.G., Polin A.N., Kozhevin P.A. Streptomycetes Biofilms. I. Occurrence and Formation. Antibiotics and Chemotherapy. 2015;60(1-2):39-46. (In Russ.)

Просмотров: 4


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)