Головоногие моллюски - источники новых антимикробных субстанций
Аннотация
Об авторах
Н. Н. БеседноваРоссия
Н. Н. Ковалев
Россия
Т. С. Запорожец
Россия
Т. А. Кузнецова
Россия
А. К. Гажа
Россия
Список литературы
1. Cтрижова O.A., Нгуен Тхи Чук Лоан, Cлободяник B.C. Кальмары как функциональные ингредиенты пищевых продуктов из гидро-бионтов. Успехи совр естествознания 2011; 7: 212-213
2. Гажа A.K. Иммуноактивный пептид из оптических ганглиев кальмара: Дис. ... канд. мед. наук. Владивосток, 1994; 124
3. Беседнова H.H., Эпштейн Л.М. Иммуноактивные пептиды из гидроби-онтов и наземных животных. Владивосток: ТИНРО-центр, 2004; 248
4. апорожец T.C. Клеточные и молекулярные механизмы иммуномодулирующего действия биополимеров морских гидробионтов: Дис. ... д-ра мед. наук. Владивосток, 2006; 350
5. Кузнецова T.A. Коррекция нарушений иммунитета и гемостаза биополимерами из морских гидробионтов (экспериментальные и клинические аспекты): Дис. ... д-ра мед. наук. М.: 2009; 316
6. Ермоленко E.B., Cултанов Р.М., Касьянов C.П., Блинов Ю.Г. Комплексная переработка липидов печени командорского кальмара Berryteuthis magister. Известия ТИНРО 2014; 176: 288-294
7. Новгородцева Т.П., Караман Ю.К., Bиткина Т.И., Касьянов C.П. Сравнительная характеристика биологической активности жиров из ге-патопанкреаса камчатского краба и печени командорского кальмара. Вест ДВО РАН 2007; 6: 105-110
8. Пивненко Т.Н., Ковалев H.H., Запорожец T.C. и др. Ферментативные гидролизаты из гидробионтов Тихого океана как основа для создания биологически активных добавок к пище и продуктов функционального питания. Владивосток: Дальнаука, 2015; 160
9. Davies J., Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74: 3: 417-433.
10. So A., Gupta N., Brahmachari S.K. et al. Towards new business models for R&D for novel antibiotics. Drug Resist Updat 2011; 14: 2: 88-94.
11. Lin L.C., Chen W.T. Antimicrobial and photoactive properties of melanin extracted from various sources of animal. Taiwan. J Agric Chem Food Sci 2004; 42: 315-320.
12. Girija S., Priyadharshini J.V., Pandi S.K. et al. Antibacterial effect of squid ink on ESBL producing strains of Escherichia coli and Klebsiella pneumoniae. Indian J Geo- Marine Sci 2012; 41: 4: 338-343.
13. Mohanraju R., Marri D.B., Karthick P. et al. Antibacterial activity of certain cephalopods from Andamans, India. Int J Pharm Biol Sci 2013; 3: 2: 450-455.
14. Monolisha S., Aswathi E.M., Patterson J., Patterson J.K.E. Molecular characterization and antimicrobial activity of Octopus aegina and Octopus dolfusii in gulf of Mannar coast. Int J Pharm Sci Res 2013; 4: 9: 3582-3587.
15. Troncone L., De Lisa E., Bertapelle C. et al. Morphofunctional characterization and antibacterial activity of haemocytes from Octopus vulgaris. J Natur History 2015; 49: 21-24: 1457-1475.
16. Derby C.D. Cephalopod ink: production, chemistry, functions and applications. Mar Drugs 2014; 12: 5: 2700-2730.
17. Vasantharaja D., Ravitchandirane V., Anandan V. Antimicrobial activity and spectro-chemical investigation of ink extracts of Sepiella inermis (Van Hasselt 1835). Notulae Sci Biol 2014; 6: 3: 273-275.
18. Liu N., Chen X.G., Park H.J. et al. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr Polym 2006; 64: 60-65.
19. Shanmugam A., Amalraj T., Palpandi C. et al. Antimicrobial activity of sulfated mucopolysaccharides (heparin and heparin-like glycosaminoglycans) from cuttlefish Euprymna berryi Sasaki, 1929. Trends Applied Sci Res 2008; 3: 1: 97-102.
20. Subhapradha N., Ramasamy P., Srinivasan A. et al. Preparation of chi-tosan derivatives from gladius of squid Sepioteuthis lessoniana (Lesson, 1830) and antimicrobial potential against human pathogens. J Biol Sci 2013; 13: 257-263.
21. Vino A.B., Shanmugan V., Shanmugan A. Antimicrobial activity of methanolic extract and fractionated polysaccharide from Loligo duvauceli Orbingy 1848 and Doryteuthis sibogae Adam 1954 on human pathogenic microorganisms. Afr J Microbiol Res 2014; 8: 3: 230-236.
22. Nirmale V., Nayak B.B., Kannapan S. et al. Antibacterial effect of the Indian squid Loligo duvauceli (d'Orbigny) ink. J Indian Fisheries Association 2002; 29: 65-69.
23. Andres Y., Giraud L., Gerente C. et al. Antibacterial effects of chitosan powder: mechanisms of action. Environ Technol 2007; 28: 12: 1357- 1363.
24. Gomez-Guillen M.C., Lopez-Caballero M.E., Aleman A. et al. Antioxidant and antimicrobial peptide fractions from squid and tuna skin gelatin. Sea By-Products as Real Material: New Ways ofApplication 2010: 89-115.
25. Fahmy S.R., Soliman A.M., Enas M.A. Antifungal and antihepatotoxic effects of sepia ink extract against oxidative stress as a risk factor of invasive pulmonary aspergillosis in neutropenic mice. Afr. J. Tradit. Complement. Altern Med 2014; 11: 3: 148-159.
26. Chen S.G., Xue C.H., Xue Y. et al. Studies on the free radical scavenging activities of melanin from squid ink. Mar Drugs 2007; 1: 50-55.
27. Gimenez B., Gomez-Estaca J., Aleman A. et al. Improvement of the antioxidant properties of squid skin gelatin films by the addition of hydrolysates from squid gelatin. Food Hydrocolloids 2009; 23: 5: 1322-1327.
28. Vate N.K., Benjakul S. Antioxidative activity of melanin-free ink from splendid squid (Loligo formosana). Int Aquatic Res 2013; 5: 9-14.
29. Kim R.H., Asaduzzaman A.K.M., Chun B.S. Stability of antioxidant properties and essential amino acids in squid viscera hydrolysate produced using subcritical water. Fisheries Aquatic Sci 2013; 16: 2: 71-78.
30. Mendis E., Rajapakse N., Byun H.G., Kim S.K. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci 2005; 77: 17: 2166-2178.
31. Sudhakar S., Nazeer R.A. Structural characterization of an Indian squid antioxidant peptide and its protective effect against cellular reactive oxygen species. J Functional Foods 2015; 14: 502-512.
32. Sadayan P., Thiyagarajan S.P., Balakrishnan B. Inhibitory activity of ink and body tissue extracts of Euprymna Stenodactyla and Octopus Dollfusi aganist histamine producing bacteria. Middle-East J Sci Res 2013; 16: 4: 514-518.
33. Mochizuki A. An antiseptic effect of cuttlefish ink. Nippon Suisan Gakkaishi 1979; 45: 11: 1401-1403.
34. Samaha-Kfoury J.N., Araj G.F. Recent developments in beta-lactamases and extended spectrum beta-lactamases. BMJ 2003; 327: 7425: 1209-1213.
35. Schwaber M.J., Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother 2007; 60: 5: 913-920.
36. WHO. WHO report: global tuberculosis control. Geneva: WHO Press; 2010.
37. Ravichandiran M., Thiripurasalini S., Ravichandiran V. et al. Chemical constituents and anti-tuberculosis activity of ink extracts of cuttlefish, Sepiella inermis. J Coas Life Med 2013; 1: 4: 253-257.
38. Desbois A.P., Smith V.J. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotech 2010; 85: 6: 1629-1642.
39. Haydar A-M.K. Evaluation of Cephalopoda extract against some nosocomial bacterial isolates. J University Thi-Qar 2013; 2: 1: 30-43.
40. Champer J., Patel J., Fernando N. et al. Chitosan against cutaneous pathogens. AMB Express 2013; 3: 1: 37-44.
41. Degiam Z.D., Abas A.T. Antimicrobial activity of some crude marine mollusca extracts against some human pathogenic bacteria. Thi-Qar Medical J 2010; 4: 3: 142-147.
42. Blunt J.W., Coop B.R., Munro M.H.G. et al. Marine natural products. Nat Prod Rep 2006; 23: 26-78.
43. Kang H.K, Seo C.H., Park Y. Marine peptides and their anti-infective activities. Mar Drugs 2015; 13: 1: 618-654.
44. Girija S., Duraipandiyan V., Kuppusamy P.S. et al. Chromatographic characterization and GC-MS evaluation of the bioactive constituents with antimicrobial potential from the pigmented ink of Loligo duvauceli. Int Scholarly Res Not 2014; Article ID 820745: 7.
45. Parekh J., Jadeja D., Chanda S. Efficacy of aqueous and methanol extracts of some medicinal plants for potential antibacterial activity. Turkish J Biol 2005; 29: 203-210.
46. Al-Bari M.A.A, Sayeed M.A., Rahman M.S., Mossadik M.A. Characterization and antimicrobial activities of a phenolic acid derivative produced by Streptomyces bangladeshiensis, a novel species collected in Bangladesh. Res J Med Medical Sci 2006; 1: 77-81.
47. Nazemi M., Khoshkhoo Z., Motalebi A., Karim H. Identification of non polar component and antibacterial activities of Iophonla evistylus from Persian Gulf. Int J Envir Sci Develop 2010; 6: 2: 92-197.
48. Uma B., Parvathavarthini R. Antibacterial effect of hexan extract of sea urchin Temnopleurus alexandri. Int J Pharm Tech Res 2010; 2: 3: 1667-1680.
49. Raman R., Raguram S., Venkataraman G. et al. Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat Methods 2005; 2: 11: 817-824.
50. Park S.C., Nam J.P., Kim J.H. et al. Antimicrobial action of water-soluble ß-chitosan against clinical multi-drug resistant bacteria. Int J Mol Sci 2015; 16: 4: 7995-8007.
51. Jothi N., Kunthavai N.R. Isolation and identification of chitin and chitosan from cuttle bone of Sepia prashadi Winckworth. Int J Curr Sci 2014; 11: 18-25.
52. Kong M., Chen X.G., Xing K., Park H.J. Antimicrobial properties of chi-tosan and mode of action: a state of the art review. Int J Food Microbiol 2010; 144: 51-63.
53. Jung J., Zhao Y. Impact of the structural differences between a- and ß-chitosan on their depolymerizing reaction and antibacterial activity. J Agric. Food Chem 2013; 61: 37: 8783-8789.
54. Chen J.L., Zhao Y. Effect of molecular weight, acid and plasticizer on the physicochemical and antibacterial properties of ß-chitosan based films. J Food Sci 2012; 77: 127-136.
55. Zhong Y., Li Y., Zhao Y. Physicochemical, microstructural, and antibacterial properties of ß-chitosan and kudzu starch composite films. J Food Sci 2012; 77: 10: E280-286.
56. Sukmark T., Rachtanapun P., Rachtanapun C. Antimicrobial activity of oligomer and polymer chitosan from different sources against foodborne pathogenic bacteria. Kasetsart J (Nat Sci) 2011; 45: 636-643.
57. Park S.C., Nah J.W., Park Y. Ph-dependet mode of antibacterial actions of low molecular weight water-soluble chitosan (LMWSC) against various pathogens. Macromol Res 2011; 19: 853-860.
58. Musthafa M., Sankaranarayanan A., Ponmurugan K., Raja S.S.S. Bioactive peptides from Loligo duvauceli (Indian marine squid) orbigny against multidrug resistant pyogenic clinical pathogens. South Indian J Biol Sci 2015; 1: 24-29.
59. Wei X., Xu J., Yang J. et al. Involvement of a Serpin serine protease inhibitor (OoSerpin) from mollusc Octopus ocellatus in antibacterial response. Fish Shellfish Immunol 2015; 42: 1: 79-87.
60. Senan V.P. Antibacterial activity of methanolic extract of the ink of cuttlefish, sepia pharaonis against pathogenic bacterial strains. Int J Pharm Sci Res 2015; 6: 4: 1705-1710.
61. Girija S., Priyadharshini J.V., Pandi S.K. et al. Isolation and characterization of lolduvin-S: a novel antimicrobial protein from the ink of Indian squid Loligo duvauceli. Int J Current Res Rev 2011; 3: 7: 4-14.
62. Bharthi P., Mani P., Ramasamy M. Anti-candidal activities of Sepia aculeate ink extract against multiple resistant Candida albicans causing oral candidiasis. Am J Biol Pharm Res 2014; 1: 1: 20-25.
63. Venilla R., Rajeshkumar P.K., Kanchana S. et al. Investigation of antimicrobial and plasma coagulation property of some molluscan ink extracts: gastropods and cephalopods. Afr J Biochem Res 2011; 5: 1: 14-21.
64. Rajaganapathi J., Thiyagarajan S.P., Edward J.K.P. Study on Cephalopod ink for antiviral activity. J Exp Biol 2000; 38: 519-520.
65. Hu G., Zheng C., Qu S. et al. Studies on inhibitory effect of melanin on the apoptosis induced by influenza virus in host cells. Virologica sinica 1999; 2: 88-92.
66. Girija S., Pandi S.K. BEHP - A phthalate derivative characterized from the south indian squid and its anti-HCV like property: an in vitro and insilico analysis. Int J Pharma Bio Sci 2015; 6: 1: 401-410.
67. Крылова H.B. Клеточные и молекулярные механизмы противовирусной защиты при клещевом энцефалите: Дис.. д-ра биол. наук. М.: 2014; 271.
68. Кузнецова Т.А., Беседнова H.H., Запорожец Т.Сидр. Сравнительное исследование иммуномодулирующей активности пептидов - тинростима и тималина. Антибиотики и химиотер 2013; 58: 11-12: 8-12
Рецензия
Для цитирования:
Беседнова Н.Н., Ковалев Н.Н., Запорожец Т.С., Кузнецова Т.А., Гажа А.К. Головоногие моллюски - источники новых антимикробных субстанций. Антибиотики и Химиотерапия. 2016;61(1-2):32-42.
For citation:
Besednova N.N., Kovalev N.N., Zaporozhets T.S., Kuznetsova T.A., Gazha A.K. Cephalopods, as a Source of New Antimicrobial Substances. Antibiotics and Chemotherapy. 2016;61(1-2):32-42. (In Russ.)