Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

SNP Polymorphism in Genomes of CC320 Isolates of Streptococcus pneumoniae Resistant to Beta-Lactams

Abstract

Bioinformatic analysis of the data on the genome sequencing of the isolates of the Streptococcus pneumoniae clonal complex SS320 from the Russian Federation, as well as the data on SS320 isolates from public sources in the penicillin resistant isolates resulted in detection of 139 missense mutations in 45 genes. In addition to the mutations in the genes of the main penicillin-binding proteins (PSB - PBP1A, PBP2B and PBP2X) there was detected high frequency of mutations in the genes of the (division and cell wall) dcw-cluster, as well as in RegR protein belonging to the transcription regulators of the LacI/GalR family. Development of resistance to beta-lactams in S.pneumoniae is defined not only by modification of the PSB, but also by adaptive changes in the metabolic pathways involved in the bacterial cell growth and division.

About the Authors

I. A. Tzvetkova
НИИ детских инфекций ФМБА России
Russian Federation


M. Q. Volkova
НИИ детских инфекций ФМБА России
Russian Federation


Q. S. Kalinogorskaya
НИИ детских инфекций ФМБА России
Russian Federation


S. S. Belanov
Университет Хельсинки, Институт Биотехнологии
Russian Federation


V. V. Gostev
НИИ детских инфекций ФМБА России
Russian Federation


S. V. Sidorenko
НИИ детских инфекций ФМБА России; Северо-Западный Государственный Медицинский Университет им. И.И. Мечникова
Russian Federation


References

1. Hulten K.G., Kaplan S.L., Lamberth L.B., Barson W.J., Romero J.R., Lin P.L., Bradley J.S., Givner L.B., Tan T.Q., Hoffman J.A., Mason E.O. Changes in Streptococcus pneumoniae Serotype 19A Invasive Infections in Children from 1993 to 2011. J Clin Microbiol 2013; 51: 1294-1297.

2. Sauerbier J., Maurer P., Rieger M., Hakenbeck R. Streptococcus pneumoniae R6 interspecies transformation: genetic analysis of penicillin resistance determinants and genome-wide recombination events. Mol Microbiol 2012; 86: 692-706.

3. Albarracin Orio A.G., Pinas G.E., Cortes P.R., Cian M.B., Echenique J. Compensatory evolution of pbp mutations restores the fitness cost imposed by beta-lactam resistance in Streptococcus pneumoniae. PLoS Pathog 2011; 7: e1002000.

4. Chewapreecha C., Marttinen P., Croucher N.J., Salter S.J., Harris S.R., Mather A.E., Hanage W.P., Goldblatt D., Nosten F.H., Turner C. et al. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLoS Genet 2014; 10: e1004547.

5. Reinert R., Jacobs M.R., Kaplan S.L. Pneumococcal disease caused by serotype 19A: review of the literature and implications for future vaccine development. Vaccine 2010; 28: 4249-4259.

6. Shin J., Baek J.Y., Kim S.H., Song J.H., Ko K.S. Predominance of ST320 among Streptococcus pneumoniae serotype 19A isolates from 10 Asian countries. J Antimicrob Chemother 2011; 66: 1001-1004.

7. Moore M.R., Gertz R.E., Jr., Woodbury R.L., Barkocy-Gallagher G.A., Schaffner W., Lexau C., Gershman K., Reingold A., Farley M., Harrison L.H. et al. Population snapshot of emergent Streptococcus pneumoniae serotype 19A in the United States, 2005. J Infect Dis 2008; 197: 1016-1027.

8. Beall B.W., Gertz R.E., Hulkower R.L., Whitney C.G., Moore M.R., Brueggemann A.B. Shifting genetic structure of invasive serotype 19A pneumococci in the United States. J Infect Dis 2011; 203: 1360-1368.

9. Vestrheim D.F., Steinbakk M., Aaberge I.S., Caugant D.A. Postvaccination increase in serotype 19A pneumococcal disease in Norway is driven by expansion of penicillin-susceptible strains of the ST199 complex. Clin Vaccine Immunol 2012; 19: 443-445.

10. Croucher N.J., Finkelstein J.A., Pelton S.I., Mitchell P.K., Lee G.M., Parkhill J., Bentley S.D., Hanage W.P., Lipsitch M. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet 2013; 45: 656-663.

11. Treangen T.J., Ondov B.D., Koren S., Phillippy A.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014; 15: 524.

12. Corander J., Marttinen P., Siren J., Tang J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 2008; 9: 539.

13. Chewapreecha C., Harris S.R., Croucher N.J., Turner C., Marttinen P., Cheng L., Pessia A., Aanensen D.M., Mather A.E., Page A.J. et al. Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet 2014; 46: 305-309.

14. Mouz N., Di Guilmi A.M., Gordon E., Hakenbeck R., Dideberg O., VernetT. Mutations in the active site of penicillin-binding protein PBP2x from Streptococcus pneumoniae. Role in the specificity for beta-lactam antibiotics. J Biol Chem 1999; 274: 19175-19180.

15. Pagliero E., Chesnel L., Hopkins J., Croize J., Dideberg O., Vernet T., Di Guilmi A.M. Biochemical characterization of Streptococcus pneumoniae penicillin-binding protein 2b and its implication in beta-lactam resistance. Antimicrob Agents Chemother 2004; 48: 1848-1855.

16. De la Iglesia R., Valenzuela-Heredia D., Pavissich J.P., Freyhoffer S., Andrade S., Correa J.A., Gonzalez B. Novel polymerase chain reaction primers for the specific detection of bacterial copper P-type ATPases gene sequences in environmental isolates and metagenomic DNA. Lett Appl Microbiol 2010; 50: 552-562.

17. Noirclerc-Savoye M., Le Gouellec A., Morlot C., Dideberg O., Vernet T., Zapun A. In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, and their transient co-localization at the division site in Streptococcus pneumoniae. Mol Microbiol 2005; 55: 413-424.

18. Land A.D., Tsui H.C., Kocaoglu O., Vella S.A., Shaw S.L., Keen S.K., Sham L.T., Carlson E.E., Winkler M.E. Requirement of essential Pbp2x and GpsB for septal ring closure in Streptococcus pneumoniae D39. Mol Microbiol 2013; 90: 939-955.

19. Massidda O., Novakova L., Vollmer W. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol 2013; 15: 3133-3157.

20. Massidda O., Anderluzzi D., Friedli L., Feger G. Unconventional organization of the division and cell wall gene cluster of Streptococcus pneumoniae. Microbiology 1998; 144 ( Pt 11): 3069-3078.

21. Miner Z., Schlagman S.L., Hattman S.Single amino acid changes that alter the DNA sequence specificity of the DNA-[N6-adenine] methyltransferase (Dam) ofbacteriophage T4. Nucleic Acids Res 1989; 17: 8149-8157.

22. Fadda D., Santona A., D Ulisse V., Ghelardini P., Ennas M.G., Whalen M.B., Massidda O. Streptococcus pneumoniae DivIVA: localization and interactions in a MinCD-free context. J Bacteriol 2007; 189: 1288-1298.

23. Chapuy-Regaud S., Ogunniyi A.D., Diallo N., Huet Y., Desnottes J.F., Paton J.C., Escaich S., Trombe M.C. RegR, a global LacI/GalR family regulator, modulates virulence and competence in Streptococcus pneumoniae. Infect Immun 2003; 71: 2615-2625.

24. Contreras-Martel C., Dahout-Gonzalez C., Martins Ados S., Kotnik M., Dessen A. PBP active site flexibility as the key mechanism for beta-lactam resistance in pneumococci. J Mol Biol 2009; 387: 899-909.

25. Fadda D., Pischedda C., Caldara F., Whalen M.B., Anderluzzi D., Domenici E., Massidda O. Characterization of divIVA and other genes located in the chromosomal region downstream of the dcw cluster in Streptococcus pneumoniae. J Bacteriol 2003; 185: 6209-6214.

26. Flardh K. Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol Microbiol 2003; 49: 1523-1536.

27. Hamoen L.W., Meile J.C., de Jong W., Noirot P., Errington J. SepF, a novel FtsZ-interacting protein required for a late step in cell division. Mol Microbiol 2006; 59: 989-999.

28. Kabeya Y., Nakanishi H., Suzuki K., Ichikawa T., Kondou Y., Matsui M. Miyagishima S.Y. The YlmG protein has a conserved function related to the distribution of nucleoids in chloroplasts and cyanobacteria. BMC Plant Biol 2010; 10: 57.

29. Miyagishima S.Y., Wolk C.P., Osteryoung K.W. Identification of cyanobacterial cell division genes by comparative and mutational analyses. Mol Microbiol 2005; 56: 126-143.

30. Ramirez-Arcos S., Liao M., Marthaler S., Rigden M., Dillon J.A Enterococcus faecalis divIVA: an essential gene involved in cell division, cell growth and chromosome segregation. Microbiology 2005; 151: 1381-1393.

31. Ramos A., Honrubia M.P., Valbuena N., Vaquera J., Mateos L.M., Gil J.A. Involvement of DivIVA in the morphology of the rod-shaped actinomycete Brevibacterium lactofermentum. Microbiology 2003; 149: 3531-3542.


Review

For citations:


Tzvetkova I.A., Volkova M.Q., Kalinogorskaya Q.S., Belanov S.S., Gostev V.V., Sidorenko S.V. SNP Polymorphism in Genomes of CC320 Isolates of Streptococcus pneumoniae Resistant to Beta-Lactams. Antibiot Khimioter = Antibiotics and Chemotherapy. 2016;61(11-12):21-27. (In Russ.)

Views: 330


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)