Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

In Vitro Study of Antitumor and Antimicrobial Activity of a Preparation of Pegylated Liposomes with Sanguinarine

Abstract

Sanguinarin is a plant alkaloid with a wide spectrum of biological activity. The effectiveness of sanguinarin can be increased by its integration into liposomal nanoparticles. The aim of this study was to obtain and purify the pegylated liposome sanguinarine, to study its properties, as well as antitumor and antimicrobial activity in vitro. Pegylated liposome nanoparticles containing sanguinarinewere obtained. The size of the liposomes was 61.8+5.7 nm; the effectiveness of the inclusion of sanguinarine in liposomes was 82.3+4.9%. The article studies the release of sanguinarin from liposome particles and demonstrates its prolonged nature. An in vitro study showed that liposomal sanguinarine exhibited dose-dependent cytotoxic activity against tumor cells of MCF-7 (12.8 μM), L1210 (17.4 μM), A431 (18.67 μM) and HepG2 (20.7 μM). The antimicrobial effect of the liposome form of the drug was established for Gram-positive (B.subtilis ATC 6633 and B.coagulans 429) and Gram-negative (E.coli ATCC 8739) bacteria, as well as opportunistic fungi Aspergillus ustus 6K. The results indicate the prospects of further study of pegylated liposomal sanguinarine as an antitumor and antimicrobial agent.

About the Authors

S. V. Lutsenko
I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
Russian Federation


T. I. Gromovykh
I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
Russian Federation


V. V. Kashirin
I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
Russian Federation


V. N. Kuryakov
Oil and Gas Research Institute RAS
Russian Federation


A. A. Baranova
Gause Institute of New Antibiotics
Russian Federation


V. S. Sadykova
Gause Institute of New Antibiotics
Russian Federation


N. B. Feldman
I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
Russian Federation


References

1. Mitscher L.A, Park Y.H., Clark D., Clark G.W. 3rd, Hammesfahr P.D. et al. Antimicrobial agents from higher plants. An investigation of Hunnemannia fumaria efolia pseudoalcoholates of sanguinarine and chelerythrine. Lloydia 1978; 41 (2): 145-150.

2. Mahady G.B., Pendland S.L., Stoia A., Chadwick L.R. In vitro susceptibility of Helicobacter pylori to isoquinoline alkaloids from Sanguinaria canadensis and Hydrastis canadensis. Phytother Res 2003; 17 (3): 217-221.

3. Giuliana G., Pizzo G., Milici M.E., Musotto G.C., Giangreco R. In vitro antifungal properties of mouthrinses containing antimicrobial agents. J Periodontol 1997; 68 (8): 729-733.

4. Ahmad N., Gupta S., Husain M.M., Heiskanen K.M., Mukhtar H. Differential antiproliferative and apoptotic response of sanguinarine for cancer cells versus normal cells. Clin Cancer Res 2000; 6 (4): 1524-1528.

5. Schmeller T., Latz-Brüning B., Wink M. Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. Phytochemistry 1997; 44 (2): 257-266.

6. Lopus M., Panda D. The benzophenanthridine alkaloid sanguinarine perturbs microtubule assembly dynamics through tubulin binding. A possible mechanism for its antiproliferative activity. FEBS J 2006; 273 (10): 2139-2150.

7. Eun J.P., Koh G.Y. Suppression of angiogenesis by the plant alkaloid, sanguinarine. BiochemBiophys Res Commun 2004; 317 (2): 618-624.

8. Wang B.H., Lu Z.X., Polya G.M. Inhibition of eukaryote protein kinases by isoquinoline and oxazine alkaloids. Planta Med 1997; 63 (6): 494-498.

9. Lee S.S., Kai M., Lee M.K. Inhibitory effects of sanguinarine on monoamine oxidase activity in mouse brain. Phytother Res 2001; 15 (2): 167-169.

10. Jeng J.H., Wu H.L., Lin B.R., Lan W.H., Chang H.H. et al. Antiplatelet effect of sanguinarine is correlated to calcium mobilization, thromboxane and cAMP production. Atherosclerosis 2007; 191 (2): 250-258.

11. Adhami V.M., Aziz M.H., Mukhtar H., Ahmad N. Activation of prodeath Bcl-2 family proteins and mitochondrial apoptosis pathway by sanguinarine in immortalized human HaCaT keratinocytes. Clin Cancer Res 2003; 9 (8): 3176-3182.

12. Ding Z, Tang S.C., Weerasinghe P., Yang X., Pater A., Liepins A. The alkaloid sanguinarine is effective against multidrug resistance in human cervical cells via bimodal cell death. Biochem Pharmacol 2002; 63 (8): 1415-1421.

13. Weerasinghe P., Hallock S., Tang S.C., Trump B., Liepins A. Sanguinarine overcomes P-glycoprotein-mediated multidrug-resistance via induction of apoptosis and oncosis in CEM-VLB 1000 cells. Exp Toxicol Pathol 2006; 58 (1): 21-30.

14. Dalvi R.R. Sanguinarine: its potential as a liver toxic alkaloid present in the seeds of Argemonemexicana. Experientia 1985; 41 (1): 77-78.

15. Williams M.K., Dalvi S., Dalvi R.R. Influence of 3-methylcholanthrene pretreatment on sanguinarine toxicity in mice. Vet Hum Toxicol 2000; 42 (4): 196-198.

16. Kosina P., Walterova D., Ulrichova J., Lichnovsky V., Stiborova M. et al. Sanguinarine and chelerythrine: assessment of safety on pigs in ninety days feeding experiment. Food ChemToxicol 2004; 42 (1): 85-91.

17. Vrba J., Kosina P., Ulrichova J., Modriansky M. Involvement of cytochrome P450 1A in sanguinarine detoxication. Toxicol Lett 2004; 151 (2): 375-387.

18. Hu C.M., Cheng Y.W., Liao J.W., Cheng H.W., Kang J.J. Induction of contracture and extracellular Ca2+ influx in cardiac muscle by sanguinarine: a study on cardiotoxicity of sanguinarine. J Biomed Sci 2005; 12 (2): 399-407.

19. Singh R., Mackraj I., Naidoo R., Gathiram P. Sanguinarine downregulates AT1a gene expression in a hypertensive rat model. J Cardiovasc Pharmacol 2006; 48 (2): 14-21.

20. Brown J.M., Giaccia A.J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 1998; 58 (7): 1408-1416.

21. Gabizon A.A. Liposomal Drug Carriers in Cancer Therapy. In:Torchilin V.P. (ed.).Nanoparticulates as Drug Carriers. London: Imperial College Press 2006: 437-462.

22. Drabu S., Khanna S., Bajaj R., Khurana B. Clinical pharmacokinetic aspects of stealth liposomes: A review. Int J Drug Dev Res 2010; 2 (4): 871-878.

23. Elmowafy M., Viitala T., Ibrahim H.M., Abu-Elyazid S.K., Samy A. et al. Silymarin loaded liposomes for hepatic targeting: in vitro evaluation and HepG2 drug uptake. Eur J Pharm Sci 2013; 50 (2): 161-171.

24. Balabanov S.S., Gavrishchuk E.M., Rostokina E.Y., Plekhovich A.D., Kuryakov V.N. et al. Colloid chemical properties of binary sols as precursors for YAG optical ceramics. Ceramics International 2016; 42 (15): 17571-17580.

25. Zhang X., Lu S., Han J., Sun S., Wang L., Li Y. Preparation, characterization and in vivo distribution of solid lipid nanoparticles loaded with syringopicroside. Pharmazie 2011; 66: 404-407.

26. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65 (1-2): 55-63.

27. Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 2016; 6 (2): 71-79.


Review

For citations:


Lutsenko S.V., Gromovykh T.I., Kashirin V.V., Kuryakov V.N., Baranova A.A., Sadykova V.S., Feldman N.B. In Vitro Study of Antitumor and Antimicrobial Activity of a Preparation of Pegylated Liposomes with Sanguinarine. Antibiot Khimioter = Antibiotics and Chemotherapy. 2018;63(3-4):3-7. (In Russ.)

Views: 370


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)