Preview

Антибиотики и Химиотерапия

Расширенный поиск

Изучение антибактериальной активности производного фенилуксусной кислоты в отношении возбудителя холеры

https://doi.org/10.37489/0235-2990-2020-65-5-6-19-24

Полный текст:

Аннотация

Изучена активность in vitro и in vivo производного фенилуксусной кислоты — диклофенака — в отношении штаммов V.cholerae О1 El Tor и образованных ими биоплёнок. В присутствии субингибирующей концентрации диклофенака (250 мг/л) выявлено уменьшение в 4 раза значений минимальных подавляющих концентраций фуразолидона и левомицетина у 30% и 100% штаммов, из числа устойчивых к этим препаратам, и достоверное увеличением диаметров зон задержки роста вокруг дисков с левомицетином, фуразолидоном, стрептомицином (для всех штаммов) и доксициклином (для двух штаммов) в сравнении с контролем. В опытах in vivo при использовании для лечения белых мышей фуразолидона, налидиксовой кислоты, левомицетина, стрептомицина, к которым заражающий штамм был устойчив, в комбинации с диклофенаком число выживших животных увеличилось до 80% в сравнении с монотерапией этими препаратами (50% и менее). Субингибирующая концентрация диклофенака не оказывала выраженного влияния на антибиотикочувствительность биоплёнок. Исследование методом трансмиссионной электронной микроскопии биоплёнки штамма V.cholerae О1 El Tor 19667 после воздействия на неё диклофенаком (250 мг/л) в течение 120 ч выявило признаки разрушения экзополисахаридного матрикса. Приведённые результаты свидетельствуют о перспективах изучения данной и других групп препаратов с целью разработки новых способов преодоления резистентности бактерий.

Об авторах

Н. А. Селянская
Ростовский-на-Дону противочумный институт
Россия

Селянская Надежда Александровна — к. м. н., старший научный сотрудник лаборатории экспериментально-биологических моделей

344002, г. Ростов-на-Дону, ул. М. Горького, 117/40



С. Н. Головин
Ростовский-на-Дону противочумный институт
Россия

Головин Сергей Николаевич — младший научный сотрудник лаборатории биологической безопасности и лечения

Ростов-на-Дону



Список литературы

1. Глобальная стратегия ВОЗ по сдерживанию устойчивости к противомикробным препаратам [интернет]. Женева: ВОЗ; 2001. / WHO global strategy for containment of antimicrobial resistance. Geneva: WHO; 2001. [in Russian] Доступно по: http://apps.who.int/medicinedocs/documents/s16343r/s16343r.pdf?ua=1 Ссылка активна на 03.10.2019.

2. Распоряжение Правительства РФ № 2045-р об утверждении Стратегии предупреждения распространения антимикробной резистентности в Российской Федерации на период до 2030 года. Москва, 25 сентября 2017 г. / Rasporyazhenie Pravitel'stva RF № 2045-r ob utverzhdenii Strategii preduprezhdeniya rasprostraneniya antimikrobnoj rezistentnosti v Rossijskoj Federatsii na period do 2030 goda. Moskva, 25 sentyabrya 2017 g. [in Russian]

3. Mondal S.I., Khadka B., Akter A., Roy P.K., Sultana R. Computer based screening for novel inhibitors against Vibrio cholerae using NCI diversity set-II: An alternative approach by targeting transcriptional activator ToxT Interdiscip Sci 2014; 6 (2): 108–117.

4. Plecha S.C., Withey J.H. Mechanism for inhibition of Vibrio cholerae ToxT activity by the unsaturated fatty acid components of bile. J Bacteriol 2015; 197 (10): 1716–1725.

5. Sun K., Bröms J., Lavander M., Gurram B.K., Enquist P.A., Andersson C.D., Elofsson M. Screening for inhibition of the Vibrio cholerae VipA-VipB interaction identifies small molecule compounds active against type VI secretion. Antimicrob Agents Chemother 2014; 58 (7): 4123–4130.

6. YamaichiY., Duigou S., Shakhnovich E.A., Waldor M.K. Targeting the Replication Initiator of the Second Vibrio Chromosome: Towards Generation of Vibrionaceae-Specific Antimicrobial Agents. PLoS Pathog 2009; 5 (11): e1000663.

7. ДУВАНОВА О.В., МИШАНЬКИН Б.Н., ТИТОВА С.В., КОРНЕЕВА Л.А. Действие N-ацетила-L-цистеина на биоплёнки холерного вибриона. Журн микробиол эпидемиол и иммунобиол. — 2018. — № 2. — С. 83–87. / Duvanova O.V., Mishan'kin B.N., Titova S.V., Korneeva L.A. Dejstvie Natsetila-L-tsisteina na bioplenki kholernogo vibriona. Zhurn mikrobiol epidemiol i immunobiol 2018; 2: 83–87. [in Russian]

8. Augustine N., Goel A.K., Sivakumar K.C., Ajay Kumar R., Thomas S. Resveratrol — a potential inhibitor of biofilm formation in Vibrio cholerae. Phytomedicine 2014; 21 (3): 286–289.

9. LeУn B., Haeckl F.P., Linington R.G. Optimized quinoline amino alcohols as disruptors and dispersal agents of Vibrio cholerae biofilms. Org Biomol Chem 2015; 13 (31): 8495–8499.

10. Akilandeswari K., Ruckmani K., Abirami S. Enhancement of the efficacy of antibiotics ciprofloxacin and gentamycin against gram positive and gram negative micro organism with non antibiotic nimesulide. Int J Pharm Pharm Sci 2013; 5 (3): 627–630.

11. Shirin H., Moss S.F., Kancherla S., Kancherla K., Holt P.R., Weinstein I.B., Sordillo E.M. Non-steroidal anti-inflammatory drugs have bacteriostatic and bactericidal activity against Helicobacter pylori. J Gastroenterol Hepatol 2006; 21 (9): 1388–1393.

12. Определение чувствительности возбудителей опасных бактериальных инфекций (чума, сибирская язва, холера, туляремия, бруцеллёз, сап, мелиоидоз) к антибактериальным препаратам: методические указания 4.2.2495-09. — М.: 2009. — 59 с. / Opredelenie chuvstvitel'nosti vozbuditelej opasnykh bakterial'nykh infektsij (chuma, sibirskaya yazva, kholera, tulyaremiya, brutsellez, sap, melioidoz) k antibakterial'nym preparatam: metodicheskie ukazaniya 4.2.2495-09. M.: 2009; 59. [in Russian]

13. ДУДИНА Н.А., ШУТЬКО А.Г., РЫЖКО И.В., ЦУРАЕВА Р.И., МОЛДАВАН И.А. Сравнительная оценка активности антибактериальных препаратов in vitro и при экспериментальной холере у белых мышей, вызванной штаммами холерного вибриона О1 и О139 серогруппы. Антибиотики и химиотер. — 2004. — № 11. — С. 23–27. / Dudina N.A., Shut'ko A.G., Ryzhko I.V., Tsuraeva R.I., Moldavan I.A. Sravnitel'naya otsenka aktivnosti antibakterial'nykh preparatov in vitro i pri eksperimental'noj kholere u belykh myshej, vyzvannoj shtammami kholernogo vibriona O1 i O139 serogruppy. Antibiotiki i khimioter 2004; 11: 23–27. [in Russian]

14. Paget J.E., Barnes Y.M. Toxicity tests. Evaluation of drug activities pharmacometric. London, 1964; 1: 135–167.

15. Патент РФ 2685878, МПК С12N 11/00. Способ моделирования биоплёнок, формируемых V.cholerae О1 серогрупп на поверхности хитина / ВОДОПЬЯНОВ С.О., ВОДОПЬЯНОВ А.С., МЕНЬШИКОВА Е.А., КУРБАТОВА Е.М., ТИТОВА С.В.; — № 2018103604; завл. 30.01.2018; опубл. 23.04.2019; Бюл. №12. / Patent RF 2685878, MPK S12N 11/00. Sposob modelirovaniya bioplenok, formiruemykh V.cholerae O1 serogrupp na poverkhnosti khitina / Vodop'yanov S.O., Vodop'yanov A.S., Men'shikova E.A., Kurbatova E.M., Titova S.V.; — № 2018103604; zavl. 30.01.2018; opubl. 23.04.2019; Bjyul. №12. [in Russian]

16. http://www.medstatistic.ru/calculators/calcpars.html

17. БОЯРСКИЙ А.Я. Статистические методы в экспериментальных медицинских исследованиях. — М.: Медицина, 1955. — 262 с. / Boyarskij A.Ya. Statisticheskie metody v eksperimental'nykh meditsinskikh issledovaniyakh. — M.: Meditsina, 1955. — 262 s. [in Russian]

18. Riordan J. T., Dupre J. M., Cantore-Matyi S. A., Kumar-Singh A., Song Y., Zaman Sh., Horan S., Helal N.S., Nagarajan V., Elasri M.O., Wilkinson B.J., Gustafson J.E. Alterations in the transcriptome and antibiotic susceptibility of Staphylococcus aureus grown in the presence of diclofenac. Ann Clin Microbiol Antimicrob 2011; 10: 30.

19. Chan E.W.L., Yee Z.Y., Raja I., Yap J.K.Y. Synergistic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on antibacterial activity of cefuroxime and chloramphenicol against methicillin-resistant Staphylococcus aureus. J Glob Antimicrob Resist. 2017; 10: 70–74.

20. Dutta N.K., Mazumdar K., Park J.H. In vitro synergistic effect of gentamicin with the anti-inflammatory agent diclofenac against Listeria monocytogenes. Lett Appl Microbiol 2009; 48 (6): 783–785.

21. Akilandeswari K., Kandasamy R., Abirami S. Enhancement of the efficacy of antibiotics ciprofloxacin and gentamycin against Gram positive and Gram negative microorganism with non-antibiotic nimesulide. Intern J Pharm Pharm Sci 2013; 5 (3): 627–630.

22. Pongkorpsakol P., Pathomthongtaweechai N., Srimanote P., Soodvilai S., Chatsudthipong V., Muanprasat C. Inhibition of cAMP-Activated Intestinal Chloride Secretion by Diclofenac: Cellular Mechanism and Potential Application in Cholera. PLOS Neglected Tropical Diseases 2014; 8 (9): https://doi.org/10.1371/journal.pntd.0003119.

23. Abbas H.A. Inhibition of virulence factors of pseudomonas aeruginosa by diclofenac sodium. Roum Arch Microbiol Immunol 2015; 74 (3–4): 79–85.

24. Krustev S.Z., Rusenova N.V., Haritova A.M. Effect of diclofenac on ocular levels of ciprofloxacin and lomefloxacin in rabbits with endophthalmitis. Drug Dev Ind Pharm 2014; 40 (11): 1459–1462.

25. Paje M.L., Kuhlicke U., Winkler M., Neu T.R. Inhibition of lotic biofilms by Diclofenac. Appl Microbiol Biotechnol 2002; 59 (4–5): 488–492.


Рецензия

Для цитирования:


Селянская Н.А., Головин С.Н. Изучение антибактериальной активности производного фенилуксусной кислоты в отношении возбудителя холеры. Антибиотики и Химиотерапия. 2020;65(5-6):19-24. https://doi.org/10.37489/0235-2990-2020-65-5-6-19-24

For citation:


Selyanskaya N.A., Golovin S.N. Study of the Antibacterial Activity of Phenylacetic Acid Derivative Against the Causative Agent of Cholera. Antibiotics and Chemotherapy. 2020;65(5-6):19-24. (In Russ.) https://doi.org/10.37489/0235-2990-2020-65-5-6-19-24

Просмотров: 397


ISSN 0235-2990 (Print)