Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Influence of the NAT2 gene polymorphic markers on the effectiveness and safety of treatment in patients with newly diagnosed pulmonary tuberculosis based on peripheral red blood cell dynamics

https://doi.org/10.37489/0235-2990-2021-66-9-10-30-38

Abstract

Background. Individual sensitivity to isoniazid in tuberculosis patients is determined by the presence of N-acetyltransferase 2 (NAT2) enzyme gene allelic variants in genome. Evaluation of quantitative and qualitative alterations in peripheral blood can be used for diagnosis, disease severity estimation, or as a clue for estimation of anti-tuberculosis chemotherapy effectiveness and safety.

Aim: Find associations between acetylation type and peripheral red blood cell (RBC) dynamics; determine the effect of NAT2 acetylation rate on the effectiveness and safety of treatment in patients with newly identified pulmonary tuberculosis (TB) residing in the Sakha Republic (Yakutia).

Methods. This study included 146 patients with various clinical forms of newly diagnosed pulmonary TB. Oral isoniazid, rifampicin, pyrazinamide, and ethambutol were administered patients. Genotyping was performed via real time PCR.

Results. Rapid and intermediate acetylators showed an increase in hemoglobin concentrations and RBC erythrocyte hemoglobin content by the end of chemotherapy (P<0.05). Incidence of anemia was lower in intermediate acetylators, compared to rapid or slow acetylators (P=0.013). Negative correlation was established between absolute RBC count and slow acetylation type (P=0.017). Patients with rapid acetylation type showed increased RBC distribution width indexes RDW-CV and RDW-SD (P<0.05).

Conclusions. An adequate therapeutic effect was achieved with standard doses of anti-TB medications in patients with intermediate acetylation type. Rapid and slow acetylators required anti-TB medication dose correction. Genotyping for NAT2 gene in patients with pulmonary TB enables clinicians to choose the optimal dose of anti-TB medications, specifically, isoniazid dose.

About the Authors

N. M. Krasnova
M. K. Ammosov North-East Federal University
Russian Federation

Natalia M. Krasnova — Ph. D. in medicine

SPIN: 8703-8169. Scopus Author ID: 57205162915

Yakutsk



S. G. Efremenko
E. N. Andreev Phthisiology Scientific and Practical Center
Russian Federation

Sofia G. Efremenko — phthisiologist

Yakutsk



N. E. Evdokimova
E. N. Andreev Phthisiology Scientific and Practical Center
Russian Federation

Nadezhda E. Evdokimova — phthisiologist

SPIN: 1169-5154

Yakutsk



O. I. Filippova
E. N. Andreev Phthisiology Scientific and Practical Center
Russian Federation

Olga I. Filippova — Head of the Department for Patients with Respiratory Tuberculosis

SPIN: 4293-2220

Yakutsk



Y. V. Chertovskikh
Republican Clinical Hospital No. 3
Russian Federation

Yana V. Chertovskikh — Head of the Personalized Medicine Center

SPIN code: 8485-9530

Yakutsk



E. A. Alekseeva
Republican Clinical Hospital No. 3
Russian Federation

Elizaveta A. Alekseeva — biologist

SPIN: 8918-7035

Yakutsk



O. V. Tatarinova
Republican Clinical Hospital No. 3
Russian Federation

Olga V. Tatarinova — D.Sc. in medicine

SPIN: 3346-0980

Yakutsk



A. I. Gotovtseva
E. N. Andreev Phthisiology Scientific and Practical Center
Russian Federation

Anna I. Gotovtseva — Ph. D. in medicine

SPIN-code: 4490-6953

Yakutsk



E. S. Prokopev
E. N. Andreev Phthisiology Scientific and Practical Center
Russian Federation

Egor S. Prokopev — Ph. D. in medicine

SPIN-code: 8046-5639

Yakutsk



A. F. Kravchenko
E. N. Andreev Phthisiology Scientific and Practical Center
Russian Federation

Alexander F. Kravchenko — D. Sc. in medicine

SPIN: 3188-6796. Scopus Author ID: 7202732143

Yakutsk



A. I. Vengerovskiy
Siberian State Medical University
Russian Federation

Alexander I. Vengerovskiy — D. Sc. in medicine

SPIN code: 8818-0543. Scopus Author ID: 6602839346

Tomsk



D. A. Sychev
Russian Medical Academy of Continuing Professional Education
Russian Federation

Dmitry A. Sychev — D. Sc. in medicine, Professor, Corresponding
Member of the RAS

SPIN code: 4525-7556. Scopus Author ID: 7801389135

Moscow



References

1. Tuberculosis in adults. Clinical guidelines. Moscow: 2020. Dostupno po: https://cr.minzdrav.gov.ru/schema/16_1. Ssylka aktivna na 24.09.2021. (in Russian)

2. Ivanova D.A. Gematologicheskie reaktsii pri lechenii bol'nykh tuberkulezom. Tuberkulez i Sotsial'no-Znachimye Zabolevaniya. 2014; 4: 56–65. (in Russian)

3. Thatoi P.K., Khadanga S. Pulmonary Tuberculosis and its hematological correlates. Transworld Med J. 2013; 1 (1): 11–13.

4. Kolobovnikova Yu.V., Urazova O.I., Novitskii V.V., Mikheeva K.O., Goncharov M.D. Molekulyarnye mekhanizmy formirovaniya eozinofilii krovi pri tuberkuleze legkikh. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk. 2012; 67 (5): 58–62. doi: 10.15690/vramn.v67i5.276. (in Russian)

5. Shareef H.A. Abnormalities of hematological parameters in newly diagnosed Pulmonary tuberculosis patients in Kirkuk city. Pakistan Journal of Medical Sciences. 2012; 20 (5): 1486–1492.

6. Kumar S., Saxena K., Pharm I.J., Bio S., Singh U.N., Saxena R. Comparative study of acute proteins in case of Anemia of Chronic Disease (ACD) and Iron Deficiency Anemia (IDA) and its relationship whit erythropoietin. International Journal of Pharmacy and Biological Sciences. 2013; 3 (3):323–328.

7. Hasan Z., Cliff J.M., Dockrell H.M., Jamil B., Irfan M., Ashraf M., Hussain R. CCL2 responses to Mycobacterium tuberculosis are associated with disease severity in tuberculosis. PLoS One. 2009;4(12):e8459. doi:10.1371/journal.pone.0008459.

8. Muzaffar T.M., Shaifuzain A.R., Imran Y., Haslina M.N. Hematological changes in tuberculous spondylitis patients at the Hospital Universiti Sains Malaysia. Southeast Asian J Trop Med Public Health. 2008; 39 (4):686–689.

9. Yaranal P.J., Umashankar T., Harish S.G. Hematological profile in pulmonary tuberculosis. Int J Health Rehabil Sci. 2013; 2 (1): 50–55.

10. Koju D., Rao B., Shrestha B., Shakya R., Makaju R. Occurrence of side effects from anti-tuberculosis drugs in urban Nepalese population under DOTS treatment. Kathmandu University J. Sci. Eng Technol. 2005; 1 (1): 1–2.

11. Ostroumova O.D., Shahova E.Yu., Kochetkov A.I. Drug-Induced Eosinophilia. Safety and Risk of Pharmacotherapy. 2019; 7 (4): 176–189. doi: 10.30895/2312-7821-2019-7-4-176-189. (in Russian)

12. Ostroumova O.D., Kravchenko E.V., Kochetkov A.I. Drug-induced thrombocytopenia. Klinicheskaya farmakologiya i terapiya. Clin Pharmacol Ther. 2019;28(4):56-64. doi: 10.32756/0869- 5490-2019-4-56-64. (in Russian)

13. Kwon B.S., Kim Y., Lee S.H., Lim S.Y., Lee Y.J., Park J.S. et al. The high incidence of severe adverse events due to pyrazinamide in elderly patients with tuberculosis. PLoS One. 2020; 15 (7): e0236109. doi:10.1371/journal.pone.0236109.

14. Ramachandran G., Swaminathan S. Role of pharmacogenomics in the treatment of tuberculosis: a review. Pharmgenomics Pers Med. 2012; 5: 89–98. doi:10.2147/PGPM.S15454.

15. Wei Z., Zhang M., Zhang X., Yi M., Xia X., Fang X. NAT2 gene polymorphisms and endometriosis risk: A PRISMA-compliant meta-analysis. PLoS One. 2019; 14 (12): e0227043. doi: 10.1371/journal.pone.0227043.

16. Yadav D., Kumar R., Dixit R.K., Kant S., Verma A., Srivastava K. et al. Association of NAT2 gene polymorphism with antitubercular drug-induced hepatotoxicity in the Eastern Uttar Pradesh population. Cureus. 2019; 11 (4): e4425. doi: 10.7759/cureus.4425.

17. Wichukchinda N., Pakdee J., Kunhapan P., Imunchot W., Toyo-oka L., Tokunaga K. et al. Haplotype-specific PCR for NAT2 diplotyping. Hum Genome Var. 2020; 7 (13). doi: 10.1038/s41439-020-0101-7.

18. World Health Organization (WHO). Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity [Internet]. WHO; 2011. Available from: http://www.who. int/vmnis/indicators/haemoglobin.pdf.

19. Kuznetsov I.B., McDuffie M., Moslehi R. A web-server for inferring the human N-acetyltransferase-2 (NAT2) enzymatic phenotype from NAT2 genotype. Bioinformatics. 2009; 25 (9): 1185–1186. doi: 10.1093/bioinformatics/btp121.

20. Litvitsky PF. Pathology in the System of Red Blood Cells. Current Pediatrics. 2015; 14 (4): 450–463. doi: 10.15690/vsp.v14.i4.1384. (in Russian)

21. Abay F., Yalew A., Shibabaw A., Enawgaw B. Hematological abnormalities of pulmonary tuberculosis patients with and without HIV at the University of Gondar Hospital, Northwest Ethiopia: a comparative cross-sectional study. Tuberc Res Treat. 2018; 30: 2018: 5740951. doi: 10.1155/2018/5740951.

22. Yaranal P.J., Umashankar T., Harish S.G. Hematological Profile in Pulmonary Tuberculosis. International Journal of Health and Rehabilitation Sciences. 2013; 2 (1): 50–55.

23. Mohammed Abaker Saeed Mohammed. Some hematological parameters among patients with pulmonary tuberculosis — Khartoum State. Scholars Journal of Applied Medical Sciences. 2016; 4 (1B): 99–111.

24. Rukavitsyn O.A. Anemia of chronic diseases: the important aspects of pathogenesis and treatment. Oncohematology. 2016; 11 (1): 37–46. doi: 10.17650/1818-8346-2016-11-1-37-46. (in Russian)

25. Budnevskiy A.V., Ovsyannikov E.S., Voronina E.V., Labzhaniya N.B., Zhusina Yu.G. New approaches to the treatment of anemia of chronic diseases. Pathological Physiology and Experimental Therapy. 2018; 62 (1):106–112. doi: 10.25557/0031-2991.2018.03.106-112. (in Russian)

26. Egorova E.N., Pustovalova R.A., Gorshkova M.A. Kliniko-diagnosticheskoe znachenie eritrotsitarnykh indeksov, opredelyaemykh avtomaticheskimi gematologicheskimi analizatorami. Verkhnevolzhskii Meditsinskii Zhurnal. 2014; 12 (3): 34–41. (in Russian)

27. Peng He, Jin-Ping Hu, Huan Li, Xiu-Juan Tian, Li-Jie He, Shi-Ren Sun, Chen Huang. Red blood cell distribution width and peritoneal dialysisassociated peritonitis prognosis. Ren Fail. 2020; 42 (1): 613–621. doi: 10.1080/0886022X.2020.1786401.

28. Lyamin A.V., Khaliulin A.V., Ismatullin D.D., Kozlov A.V., Baldina O.A. Zhelezo kak essentsial'nyi faktor rosta mikobakterii. Izvestiya Samarskogo Nauchnogo Tsentra Rossiiskoi Akademii Nauk. 2016; 18 (5–2): 320–327. (in Russian)

29. Аbdullаev R.Yu., Komissаrovа O.G., Terentievа O.R. Specific parameters of iron metabolism in tuberculosis. Tuberculosis and Lung Diseases. 2021; 99 (3): 58–66. doi:10.21292/2075-1230-2021-99-3-58-66. (in Russian)

30. Orlov Yu.P., Govorova N.V., Lukach V.N., Baitugaeva G.A., Klement'ev A.V., Kakulya E.N. Metabolizm zheleza v usloviyakh infektsii. Obzor literatury. Vestnik Intensivnoi Terapii im. A.I. Saltanova. 2020; 1: 90–99. doi: 10.21320/1818-474X-2020-1-90-99. (in Russian)

31. Abaturov A.E., Kryuchko T.A. Medikamentoznoe ogranichenie dostupnosti ionov zheleza dlya patogennykh bakterii (chast' 1). Zdorov'e Rebenka. 2018; 13 (4): 416–424. doi: 10.22141/2224-0551.13.4.2018.137030. (in Russian)

32. Tarasova N.E., Teplyakova E.D. Ferrokinetika i mekhanizmy ee regulyatsii v organizme cheloveka. Zhurnal Fundamental'noi Meditsiny i Biologii. 2012; 1: 10–16. (in Russian)]

33. Borodulin B.E., Yakovleva E.V., Borodulina E.A., Komissarova O.G. Iron metabolism in tuberculosis and iron-containing chemotherapeutic drugs in its treatment. Science & Innovations in Medicine. 2020; 5 (3): 193–196. doi: 10.35693/2500-1388-2020-5-3-193-196. (in Russian)

34. Maryam-Sadat Mirlohi, Alireza Ekrami, Saeed Shirali, Mehdi Ghobeishavi, Fatemeh Pourmotahari. Hematological and liver toxicity of anti-tuberculosis drugs. Electron Physician. 2016; 8 (9): 3005–3010. doi: 10.19082/3010.

35. Mthiyane T., Millard J., Adamson J., Balakrishna Y., Connolly C., Owen A. N-acetyltransferase 2 genotypes among zulu-speaking south africans and isoniazid and N-acetyl-isoniazid pharmacokinetics during antituberculosis treatment. Antimicrob Agents Chemother. 2020; 64 (4):e02376–19. doi: 10.1128/AAC.02376-19.

36. Pasipanodya J.G., Srivastava S., Gumbo T. Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis for acquired drug resistance and failure of antituberculosis therapy. Clin Infect Dis. 2012; 55 (2): 169–77. doi: 10.1093/cid/cis353.

37. Hemanth Kumar A.K., Ramesh K., Kannan T., Sudha V., Hemalatha Haribabu, Lavanya J. et al. N-acetyltransferase gene polymorphisms & plasma isoniazid concentrations in patients with tuberculosis. Indian J Med Res. 2017; 145 (1): 118–123. doi: 10.4103/ijmr.IJMR_2013_15.


Review

For citations:


Krasnova N.M., Efremenko S.G., Evdokimova N.E., Filippova O.I., Chertovskikh Y.V., Alekseeva E.A., Tatarinova O.V., Gotovtseva A.I., Prokopev E.S., Kravchenko A.F., Vengerovskiy A.I., Sychev D.A. Influence of the NAT2 gene polymorphic markers on the effectiveness and safety of treatment in patients with newly diagnosed pulmonary tuberculosis based on peripheral red blood cell dynamics. Antibiot Khimioter = Antibiotics and Chemotherapy. 2021;66(9-10):30-38. (In Russ.) https://doi.org/10.37489/0235-2990-2021-66-9-10-30-38

Views: 516


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)