Preview

Антибиотики и Химиотерапия

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Фукоиданы бурых водорослей: влияние элементов молекулярной архитектуры на функциональную активность

Полный текст:

Аннотация

В обзоре рассмотрены вопросы истории открытия и номенклатуры фукоиданов — интересной группы фукозсодержащих сульфатированных полисахаридов бурых водорослей (Phaeophyceae), отличающихся широким спектром биоактивных свойств. Охарактеризованы факторы, обуславливающие сложное строение этих гетерогенных биополимеров, обобщены экспериментальные исследования, посвященные выяснению роли элементов структуры молекулы биогликанов (химических групп, молекулярной массы, гликозидных связей, моносахаридов) на некоторые биологические свойства — антикоагулятяые, противовоспалительнью, антиоксидантные и др. Отмечено, что несмотря на продолжительную историю изучения фукоиданов, понимание ассоциации тех или иных фармакофорных свойств в контексте особенностей молекулярной структуры далеко от своего завершения из-за чрезвычайной сложности структуры молекул, обусловленной как эндотак и экзогенными (экологическими) факторами, а также из-за проблем воспроизводимости экстракции препаратов фукоиданов. Источники литературы были агрегированы из каталогов библиотек и электронных баз данных (PubMed, Web of Science, Science Direct).

Об авторах

С. Р. Хильченко
Любекский институт экспериментальной дерматологии
Германия


Т. С. Запорожец
НИИ эпидемиологии и микробиологии им. Г. П. Сомова
Россия


Т. Н. Звягинцева
Тихоокеанский институт биоорганической химии им. Г. Б. Елякова Дальневосточного отделения Российской академии наук
Россия


Н. М. Шевченко
Тихоокеанский институт биоорганической химии им. Г. Б. Елякова Дальневосточного отделения Российской академии наук
Россия


Н. Н. Беседнова
НИИ эпидемиологии и микробиологии им. Г. П. Сомова
Россия


Список литературы

1. Berteau O., Mulloy B. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 2003; 13: 6: 29R—40R.

2. Bilan M.I., Grachev A.A., Ustuzhanina N.E., Shashkov A.S., Nifantiev N.E., Usov A.I. Structure of a fucoidan from the brown seaweed Fucus evanescens C. Ag. Carbohydr Res 2002; 337: 8: 719—730.

3. Doh-ura K., Kuge T., Uomoto M., Nishizawa K., Kawasaki Y., Iha M. Prophylactic effect of dietary seaweed fucoidan against enteral prion infection. Antimicrob Agents Chemother 2007; 51: 6: 2274—2277.

4. Mourão P.A.S. Use of Sulfated Fucans as Anticoagulant and Antithrombotic Agents: Future Perspectives. Curr Pharm Des 2004; 10: 967—981.

5. Mandal P., Mateu C.G., Chattopadhyay K., Pujol C.A., Damonte E.B., Ray B. Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica. Antivir Chem Chemother 2007; 18: 3: 153—162.

6. Bilan M.I., Usov A.I. Structural analysis of fucoidans. Natural Product Communication 2008; 3: 10: 1639—1648.

7. Zvyagintseva T.N., Shevchenko N.M., Nazarenko E.L., Gorbach V.I., Urvantseva A.M., Kiseleva M.I. et al. Water-soluble polysaccharides of some brown algae of the Russian Far-East. Structure and biological action of low-molecular mass polyuronans. J Exp Mar Biol Ecol 2005; 320: 2: 123—131.

8. Билан М.И., Клочкова H.E., Шашков A.C., Усов А.И. Полисахариды тихоокеанской бурой водоросли Alalia marginata. Изв АН Сер хим 2018; 54: 1: 137-43. / Bilan M.L, Klochkova N.G., Shashkov A.S., Usov AT. Polisaharidy tihookeanskoj buroj vodorosli Alaria marginata. IzvAN Ser him 2018; 54: 1: 137-143. [In Russian]

9. Vasseur E. Chemical studies on the jelly coat of the sea-urchin egg. Acta Chem Scand 1948; 2: 900—913.

10. Mourão P.A.S. A Carbohydrate-based mechanism of species recognition in sea urchin fertilization. Braz J Med Biol Res 2007; 40: 5—17.

11. Bisgrove S.R., Kropf D.L. Cell wall deposition during morphogenesis in fucoid algae. Planta 2001; 212: 5: 648—658.

12. Mabeau S., Kloareg B., Joseleau J.-P. Fractionation and analysis of fucans from brown algae. Phytochemistry 1990; 29: 8: 2441—2445.

13. Aquino R.S., Grativol C., Mourão P.A.S. Rising from the Sea: Correlations between Sulfated Polysaccharides and Salinity in Plants. PLoS One 2011; 6: 4: e18862.

14. Harvey D.J. Quantitative aspects of the matrix?assisted laser desorption mass spectrometry of complex oligosaccharides. Rapid Commun Mass Spectrom 1993; 7: 7: 614—619.

15. Kusaykin M., Bakunina I., Sova V., Ermakova S., Kuznetsova T., Besednova N. et al. Structure, biological activity, and enzymatic of fucoidans from the brown seaweeds. Biotechnol J 2008; 3: 904—915.

16. Daniel R., Chevolot L., Carrascal M., Tissot B., Mourao P.A., Abian J. Electrospray ionization mass spectrometry of oligosaccharides derived from fucoidan of Ascophyllum nodosum. Carbohydr Res 2007; 342: 6: 826—834.

17. Ciancia M., Sato Y., Nonami H., Cerezo A.S., Erra-Balsells R., Matulewicz M.C. Autohydrolysis of a partially cyclized mu/nu-carrageenan and structural elucidation of the oligosaccharides by chemical analysis, NMR spectroscopy and UV-MALDI mass spectrometry. ARKIVOC 2005(Pt 12): 319—331.

18. Шевченко H.M., Анастюк С.Д., Еерасименко НИ., Дмитренок П. С, Исаков В.В., Звягинцева Т.Н. Йолисахаридный и липидный состав бурой водоросли Laminaria gurjanovae. Биоорган хим. — 2007. — Т. 33. - № 1. С. 96-107. / Shevchenko N.M., Anastjuk S.D., Gerasimenko N.I., Dmitrenok P.S., Isakov V.V., Zvjaginceva T.N. Polisaharidnyj i lipidnyj sostav buroj vodorosli Laminaria gurjanovae. Bioorgan him 2007; 33:1: 96—107. [In Russian]

19. Bilan M.I., Grachev A.A., Ustuzhanina N.E., Shashkov A.S., Nifantiev N.E., Usov A.I. A highly regular fraction of a fucoidan from the brown seaweed Fucus distichus L. Carbohydr Res 2004; 339: 3: 511—517.

20. Pereira M.S., Mulloy B., Mourão P.A.S. Structure and anticoagulant activity of sulfated fucans. Comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J Biol Chem 1999; 274: 12: 7656—7667.

21. Ustyuzhanina N.E., Krylov V.B., Usov A.I., Nifantiev N.E. Synthesis of fucoidan fragments. Â êí.: Nifantiev N.E. (ðåä.). Progress in the synthesis of complex carbohydrate chains of plant and microbial polysaccharides. Kerala: Transworld Research Network, 2009; 131—154.

22. Kusaykin M., Chizhov A., Grachev A., Alekseeva S., Bakunina I., Nedashkovskaya O. et al. A comparative study of specificity of fucoidanases from marine microorganisms and invertebrates. J Appl Phycol 2006; 18: 3: 369—373.

23. Anastyuk S.D., Shevchenko N.M., Nazarenko E.L., Dmitrenok P.S., Zvyagintseva T.N. Structural analysis of a fucoidan from the brown alga Fucus evanescens by MALDI-TOF and tandem ESI mass spectrometry. Carbohydr Res 2009; 344: 6: 779—787.

24. Bilan M.I., Grachev A.A., Shashkov A.S., Nifantiev N.E., Usov A.I. Structure of a fucoidan from the brown seaweed Fucus serratus L. Carbohydr Res 2006; 341: 2: 238—245.

25. Preeprame S., Hayashi K., Lee J.B., Sankawa U., Hayashi T. A novel antivirally active fucan sulfate derived from an edible brown alga, Sargassum horneri. Chem Pharm Bull (Tokyo) 2001; 49: 4: 484—485.

26. Li B., Wei X.-J., Sun J.-L., Xu S.-Y. Structural investigation of a fucoidan containing a fucose-free core from the brown seaweed, Hizikia fusiforme. Carbohydr Res 2006; 341: 9: 1135—1146.

27. Билан М.И, Захарова АН, Ерачёв А.А., Шашков А.С., Нифантьев Н.Э., УсовАИ Полисахариды водорослей. 60. Фуковдан из тихоокеанской бурой водоросли Analipusjaponicus (Harv.) Winne (Ectocarpales, Scytosiphonaceae). Биоорган хим. — 2007. — Т. 33. — № 1. — С. 44—53. / Bilan M.L, Zaharova A.N., Grachjov A.A., Shashkov A.S., Nifant'ev NJe., Usov AT. Polisaharidy vodoroslej. 60. Fukoidan iz tihookeanskoj buroj vodorosli Analipus japonicus (Harv.) Winne (Ectocarpales, Scytosiphonaceae). Bioorgan him 2007; 33:1:44—53. [In Russian]

28. Hoshino T., Hayashi T., Hayashi K., Hamada J., Lee J.-B., Sankawa U. An antivirally active sulfated polysaccharide from Sargassum horneri (Turner) C.Agardh. Biol Pharm Bull 1998; 21: 7: 730—734.

29. Yang C., Chung D., You S. Determination of physicochemical properties of sulphated fucans from sporophyll of Undaria pinnatifida using light scattering technique. Food Chem 2008; 111: 2: 503—507.

30. Usov A.I., Smirnova G.P., Bilan M.I., Shashkov A.S. Polysaccharides of algae. 53. Brown algae Laminaria saccharina (L.) Lam. as a source of fucoidan. Russ J Bioorgan Chem 1998; 24: 437—445.

31. Cumashi A., Ushakova N.A., Preobrazhenskaya M.E., D’Incecco A., Piccoli A., Totani L. et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007; 17: 5: 541—552.

32. Hmelkov A.B., Zvyagintseva T.N., Shevchenko N.M., Rasin A.B., Ermakova S.P. Ultrasound-assisted extraction of polysaccharides from brown alga Fucus evanescens. Structure and biological activity of the new fucoidan fractions. J Appl Phycol 2017:

33. Rioux L.E., Turgeon S.L., Beaulieu M. Characterization of polysaccharides extracted from brown seaweeds. Carbohydr Polym 2007; 69: 3: 530—537.

34. Rocha de Souza M.C., Marques C.T., Guerra Dore C.M., Ferreira da Silva F.R., Oliveira Rocha H.A., Leite E.L. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol 2007; 19: 2: 153—160.

35. Chevolot L., Mulloy B., Ratiskol J., Foucault A., Colliec-Jouault S. A dissacharide repeat unit is the major structure in fucoidan from two species of brown algae. Carbohydr Res 2001; 330: 4: 529—535.

36. Nagaoka M., Shibata H., Takagi K.I., Hashimoto S., Kimura K., Makino T. et al. Structural study of fucoidan from Cladosiphon okamuranus Tokida. Glycoconj J 1999; 45: 325—336.

37. Sakai T., Ishizuka K., Shimanaka K., Ikai K., Kato I. Structures of oligosaccharides derived from Cladosiphon okamuranus fucoidan by digestion with marine bacterial enzymes. Mar Biotechnol 2003; 5: 536—544.

38. Anastyuk S.D., Shevchenko N.M., Nazarenko E.L., Imbs T.I., Gorbach V.I., Dmitrenok P.S. et al. Structural analysis of a highly sulfated fucan from the brown alga Laminaria cichorioides by tandem MALDI and ESI mass spectrometry. Carbohydr Res 2010; 345: 15: 2206—2212.

39. Chizhov A.O., Dell A., Morris H.R., Haslam S.M., McDowell R.A., Shashkov A.S. et al. A study of fucoidan from the brown seaweed Chorda filum. Carbohydr Res 1999; 320: 1—2: 108—119.

40. Mulloy B. The specificity of interactions between proteins and sulfated polysaccharides. An Acad Bras Ciênc 2005; 77: 4: 651—664.

41. Honya M., Mori H., Anzai M., Araki Y., Nisizawa K. Monthly changes in the content of fucans, their constituent sugars and sulphate in cultured Laminaria japonica. Hydrobiologia 1999; 398/399: 411—416.

42. Zvyagintseva T.N., Shevchenko N.M., Chizhov A.O., Krupnova T.N., Sundukova E.V., Isakov V.V. Water-soluble polysaccharides of some fareastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions. J Exp Mar Biol Ecol 2003; 294: 1: 1—13.

43. Kimura T., Ueda K., Kuroda R., Akao T., Shinohara N., Ushirokawa T. et al. The seasonal variation in polysaccharide content of brown alga akamoku Sargassum horneri collected off Oshima Island (Fukuoka Prefecture). Nippon Suisan Gakkaishi 2007; 73: 4: 739—744.

44. Obluchinskaya E. Comparative chemical composition of the Barents Sea brown algae. Appl Biochem Microbiol 2008; 44: 3: 305—309.

45. Yang C., Chung D., Shin I.-S., Lee H., Kim J., Lee Y. et al. Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. Int J Biol Macromol 2008; 43: 5: 433—437.

46. Ponce N.M.A., Pujol C.A., Damonte E.B., Flores M.L., Stortz C.A. Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydr Res 2003; 338: 2: 153—165.

47. Rupérez P., Ahrazem O., Leal J.A. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem 2002; 50: 4: 840—845.

48. Урванцева A.M., Бакунина И.Ю., Ким Н.Ю., Исаков В.В., Глазунов В.П., Звягинцева Т.Н. Выделение очищенного фукоидана из природного комплекса с полифенолами и его характеристика. Хим раст сырья. — 2004. — С. 15—24. / UrvancevaA.M., Bakunina L.Ju., Kim N.Ju., Lsakov V. V., Glazunov V.P., Zvjaginceva T.N. Vydelenie ochishhennogo fukoidana iz prirodnogo kompleksa s polifenolami i ego harakteristika. Him rast syr'ja 2004:15—24. [In Russian]

49. Запорожец Т. С, Кузнецова ТА., Смолина Т.П., Шевченко Н.М., Звягинцева Т.Н., Беседнова Н.Н. Иммунотропные и антикоагулянтные свойства фукоидана из бурой водоросли Lucus evanescens: перспективы применения в медицине. Журн микробиол эпвдемиол и им- мунобиол. - 2006. - № 53. - С. 54—58. / Zaporozhec T.S., Kuznecova ТА., Smolina Т.P., Shevchenko N.M., Zvjaginceva T.N., Besednova Н.Н. Immunotropnye i antikoaguljantnye svojstva fukoidana iz buroj vodorosli Fucus evanescens: perspektivy primenenija v medicine. Zh mikrobiol epidemiol i immunobiol 2006; 53: 54—58. [In Russian]

50. Макаренкова И.Д., Леонова Т.Н., Майстровская О.С, Звягинцева Т.Н., Имбс Т.П., Ермакова СП. et al. Противовирусная активность сульфатированных полисахаридов из бурых водорослей при экспериментальном клещевом энцефалите: связь структуры и функции. Тихоокеан меджур. — 2012/ — № 1. — С. 44—46. / Makarenkova L.D., Leonova G.N., Majstrovskaja O.S., Zvjaginceva T.N., Lmbs T.L., Ermakova S.P. i dr. Protivovirusnaja aktivnost' sul'fatirovannyh polisaharidov iz buryh vodoroslej pri jeksperimental'nom kleshhevom jencefalite: svjaz' struktury i funkcii. Tihookean medicin zhur 2012; 1: 44—46. [In Russian]

51. Беседнова Н.Н, Кузнецова ТА., Запорожец ТС, Звягинцева Т.Н. Морские бурые водоросли — источник новых фармацевтических субстанций антибактериальной направленности. Антибиотики и хи- миотер. - 2015. - Т. 60. - № 3-4. - С. 31-41. / Besednova Н.Н, Kuznecova ТА., Zaporozhec T.S., Zvjaginceva T.N. Morskie burye vodorosli — istochnik novyh farmacevticheskih substancij antibakterial'noj napravlennosti.Antibiotikiikhimioter2015; 60:3—4:31—41. [In Russian]

52. Kwak J.-Y. Fucoidan as a Marine Anticancer Agent in Preclinical Development. Mar Drugs 2014; 12: 2: 851.

53. Ustyuzhanina N.E., Bilan M.I., Ushakova N.A., Usov A.I., Kiselevskiy M.V., Nifantiev N.E. Fucoidans: Pro- or antiangiogenic agents? Glycobiology 2014; 24: 12: 1265—1274.

54. Schaeffer D.J., Krylov V.S. Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol Environ Saf 2000; 45: 3: 208—227.

55. Nishino T., Yokoyama G., Dobashi K., Fujihara M., Nagumo T. Isolation, purification, and characterization of fucose-containing sulfated polysaccharides from the brown seaweed Ecklonia kurome and their blood-anticoagulant activities. Carbohydr Res 1989; 186: 1: 119—129.

56. Blondin C., Chaubet F., Nardella A., Sinquin C., Jozefonvicz J. Relationships between chemical characteristics and anticomplementary activity of fucans. Biomaterials 1996; 17: 6: 597—603.

57. Ushakova N., Morozevich G., Ustyuzhanina N., Bilan M., Usov A., Nifantiev N. et al. Anticoagulant activity of fucoidans from brown algae. Biochem (Mosc) Suppl Ser B Biomed Chem 2008; 3: 1: 77—83.

58. Clément M.-J., Tissot B., Chevolot L., Adjadj E., Du Y., Curmi P.A. et al. NMR characterization and molecular modeling of fucoidan showing the importance of oligosaccharide branching in its anticomplementary activity. Glycobiology 2010; 20: 7: 883—894.

59. Zhu W., Ooi V.E., Chan P.K., Ang P.O., Jr. Isolation and characterization of a sulfated polysaccharide from the brown alga Sargassum patens and determination of its anti-herpes activity. Biochem Cell Biol 2003; 81: 1: 25—33.

60. Witvrouw M., De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 1997; 29: 4: 497—511.

61. Boisson-Vidal C., Chaubet F., Chevolot L., Sinquin C., Theveniaux J., Millet J. et al. Relationship between antithrombotic activities of fucans and their structure. Drug Dev Res 2000; 51: 4: 216—224.

62. Dace R., McBride E., Brooks K., Gander J., Buszko M., Doctor V.M. Comparison of the anticoagulant action of sulfated and phosphorylated polysaccharides. Thromb Res 1997; 87: 1: 113—121.

63. Qiu X., Amarasekara A., Doctor V. Effect of oversulfation on the chemical and biological properties of fucoidan. Carbohydr Polym 2006; 63: 2: 224—228.

64. Nishino T., Nagumo T. Anticoagulant and antithrombin activities of oversulfated fucans. Carbohydr Res 1992; 229: 2: 355—362.

65. Soeda S., Sakaguchi S., Shimeno H., Nagamatsu A. Fibrinolytic and anticoagulant activities of highly sulfated fucoidan. Biochem Pharmacol 1992; 43: 8: 1853—1858.

66. Soeda S., Fujii N., Shimeno H., Nagamatsu A. Oversulfated fucoidan and heparin suppress endotoxin induction of plasminogen activator inhibitor-1 in cultured human endothelial cells: their possible mechanism of action. Biochim Biophys Acta 1995; 1269: 1: 85—90.

67. Wang J., Zhang Q., Zhang Z., Song H., Li P. Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. Int J Biol Macromol 2010; 46: 1: 6—12.

68. Imbs T.I., Skriptsova A.V., Zvyagintseva T.N. Antioxidant activity of fucose-containing sulfated polysaccharides obtained from Fucus evanescens by different extraction methods. J Appl Phycol 2015; 27: 1: 545—553.

69. Maruyama H., Tanaka M., Hashimoto M., Inoue M., Sasahara T. The suppressive effect of Mekabu fucoidan on an attachment of Cryptosporidium parvum oocysts to the intestinal epithelial cells in neonatal mice. Life Sci 2007; 80: 8: 775—781.

70. Ying P., Shakibaei M., Patankar M.S., Clavijo P., Beavis R.C., Clark G.F. et al. The malaria circumsporozoite protein: interaction of the conserved regions I and II-plus with heparin-like oligosaccharides in heparan sulfate. Exp Parasitol 1997; 85: 2: 168—182.

71. Adhikari U., Mateu C.G., Chattopadhyay K., Pujol C.A., Damonte E.B., Ray B. Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemistry 2006; 67: 22: 2474—2482.

72. Soeda S., Kozako T., Iwata K., Shimeno H. Oversulfated fucoidan inhibits the basic fibroblast growth factor-induced tube formation by human umbilical vein endothelial cells: its possible mechanism of action. Biochim Biophys Acta 2000; 1497: 1: 127—134.

73. Koyanagi S., Tanigawa N., Nakagawa H., Soeda S., Shimeno H. Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem Pharmacol 2003; 65: 2: 173—179.

74. Teruya T., Konishi T., Uechi S., Tamaki H., Tako M. Anti-proliferative activity of oversulfated fucoidan from commercially cultured Cladosiphon okamuranus Tokida in U937 cells. Int J Biol Macromol 2007; 41: 3: 221—226.

75. Park J.-S., Kim A., Kim E.-H., Suh H.-S., WonChul C. Increased anticancer activity by the sulfated fucoidan from korean brown seaweeds. Journal of the Korean Chemical Society 2002; 46: 2: 151—156.

76. Dürig J., Bruhn T., Zurborn K.-H., Gutensohn K., Bruhn H.D., Béress L. Anticoagulant fucoidan fractions from Fucus vesiculosus induce platelet activation in vitro. Thromb Res 1997; 85: 6: 479—491.

77. Soeda S., Ishida S., Shimeno H., Nagamatsu A. Inhibitory effect of oversulfated fucoidan on invasion through reconstituted basement membrane by murine lewis lung carcinoma. Cancer Sci 1994; 85: 11: 1144—1150.

78. Wang J., Liu L., Zhang Q., Zhang Z., Qi H., Li P. Synthesized oversulphated, acetylated and benzoylated derivatives of fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro. Food Chem 2009; 114: 4: 1285—1290.

79. Soeda S., Ishida S., Honda O., Shimeno H., Nagamatsu A. Aminated fucoidan promotes the invasion of 3 LL cells through reconstituted basement membrane: its possible mechanism of action. Cancer Lett 1994; 85: 1: 133—138.

80. Lapikova E., Drozd N., Tolstenkov A., Makarov V., Zvyagintseva T., Shevchenko N. et al. Inhibition of thrombin and factor Xa by Fucus evanescens fucoidan and its modified analogs. Bull Exp Biol Med 2008; 146: 3: 328—333.

81. Becker C.F., Guimarães J.A., Mourão P.A.S., Verli H. Conformation of sulfated galactan and sulfated fucan in aqueous solutions: Implications to their anticoagulant activities. J Mol Graphics Model 2007; 26: 1: 391—399.

82. Morya V., Kim J., Kim E.-K. Algal fucoidan: structural and size-dependent bioactivities and their perspectives. Appl Microbiol Biotechnol 2012; 93: 1: 71—82.

83. Dürig J., Bruhn T., Zurborn K.-H., Gutensohn K., Bruhn H.D., Béress L. Anticoagulant fucoidan fractions from Fucus vesiculosus induce platelet activation in vitro. Thromb Res 1997; 85: 6: 479—491.

84. Chandía N.P., Matsuhiro B. Characterization of a fucoidan from Lessonia vadosa (Phaeophyta) and its anticoagulant and elicitor properties. Int J Biol Macromol 2008; 42: 3: 235—240.

85. Zhu Z., Zhang Q., Chen L., Ren S., Xu P., Tang Y. et al. Higher specificity of the activity of low molecular weight fucoidan for thrombin-induced platelet aggregation. Thromb Res 2010; 125: 5: 419—426.

86. Nishino T., Nagumo T., Kiyohara H., Yamada H. Structural characterization of a new anticoagulant fucan sulfate from the brown seaweed Ecklonia kurome. Carbohydr Res 1991; 211: 1: 77—90.

87. Pomin V.H., Valente A.P., Pereira M.S., Mourão P.A.S. Mild acid hydrolysis of sulfated fucans: a selective 2-desulfation reaction and an alternative approach for preparing tailored sulfated oligosaccharides. Glycobiology 2005; 15: 12: 1376—1385.

88. Park S.-B., Chun K.-R., Kim J.-K., Suk K., Jung Y.-M., Lee W.-H. The differential effect of high and low molecular weight fucoidans on the severity of collagen-induced arthritis in mice. Phytother Res 2010; 24: 9: 1384—1391.

89. Goor Y., Goor O., Wollman Y., Chernichovski T., Schwartz D., Cabili S. et al. Fucoidin, an inhibitor of leukocyte adhesion, exacerbates acute ischemic renal failure and stimulates nitric oxide synthesis. Scand J Urol Nephrol 2006; 40: 57—62.

90. Dittrich S., Lippek F., Gratopp A., Grosse-Siestrup C., Lange P.E., Buhrer C. Intravascular granulocyte aggregates caused by the selectin-binding carbohydrate fucoidin in pig kidneys. Clin Exp Pharmacol Physiol 2002; 29: 10: 909—914.


Для цитирования:


Хильченко С.Р., Запорожец Т.С., Звягинцева Т.Н., Шевченко Н.М., Беседнова Н.Н. Фукоиданы бурых водорослей: влияние элементов молекулярной архитектуры на функциональную активность. Антибиотики и Химиотерапия. 2018;63(9-10):69-79.

For citation:


Khikhenko S.R., Zaporozhets T.S., Zvyagintseva T.N., Shevchenko N.M., Besednova N.N. Fucoidans from Brown Algae: the Influence of Molecular Architecture Features on Functional Activity. Antibiotics and Chemotherapy. 2018;63(9-10):69-79. (In Russ.)

Просмотров: 43


ISSN 0235-2990 (Print)