Preview

Антибиотики и Химиотерапия

Расширенный поиск

SCCmec кассеты, эволюция и генетические линии метициллинорезистентных золотистых стафилококков

Полный текст:

Аннотация

Метициллинорезистентные золотистые стафилококки (MRSA) являются важнейшими возбудителями внутрибольничных и внебольничных инфекций. Метициллинорезистентность обусловлена наличием гена mecA, который локализован в сложноорганизованном мобильном элементе - стафилококковой хромосомной кассете (staphylococcal cassette chromosome mec - SCCmec). Стафилококковые кассеты имеют различное строение, и на сегодняшний день описано одиннадцать типов. Кассеты SCCmec I-IV типов всегда ассоциированы с эпидемиологически значимыми генетическими линиями стафилококков. Так, пандемично распространённые госпитальные штаммы MRSA (hospital-associated methicillin-resistant Staphylococcus aureus HA-MRSA), принадлежащие к клональным комплексам CC5, CC8, имеют SCCmec I-III типов. Распространение во многих регионах мира вирулентных внебольничных MRSA (community-associated methicillin-resistant Staphylococcus aureus CA-MRSA), в первую очередь, связывают с особенностями строения SCCmec IV типа, а также наличием недавно описанного мобильного элемента катаболизма аргинина (ACME), повышающего колонизационную активность стафилококков. В обзоре представлены современные данные о происхождении, генетическом строении, классификации SCCmec. Описаны глобальные генетические лини MRSA, а также рассмотрена проблема CA-MRSA.

Об авторах

В. В. Гостев
ФГБУ «НИИ Детских инфекций» ФМБА России
Россия


С. В. Сидоренко
ФГБУ «НИИ Детских инфекций» ФМБА России
Россия


Список литературы

1. Jevons M. «Celbenin»-resistant staphylococci. BMJ, 1961. 1 (5219): p. 124-125.

2. Matsuhashi M. et al. Molecular cloning of the gene of a penicillin-binding protein supposed to cause high resistance to beta-lactam antibiotics in Staphylococcus aureus. J Bacteriol 1986; 167: 3: 975-980.

3. Brown D.F., Reynolds P.E. Intrinsic resistance to beta-lactam antibiotics in Staphylococcus aureus. FEBS Lett 1980; 122: 2:. 275-278.

4. Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2000; 44: 6: 1549-1555.

5. Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother 2009; 53: 12: 4961-4967.

6. Ruppe E. et al. Diversity of staphylococcal cassette chromosome mec structures in methicillin-resistant Staphylococcus epidermidis and Staphylococcus haemolyticus strains among outpatients from four countries. Antimicrob Agents Chemother 2009; 53: 2: 442-449.

7. Soderquist B, Berglund C. Methicillin-resistant Staphylococcus saprophyticus in Sweden carries various types of staphylococcal cassette chromosome mec (SCCmec). Clin Microbiol Infect. 2009; 15: 12: 1176-1178.

8. Mallorqui-Fernandez G. et al. Staphylococcal methicillin resistance: fine focus on folds and functions. FEMS Microbiol Lett 2004; 235: 1: 1-8.

9. Ito T. et al. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2001; 45: 5: 1323-1336.

10. Zhang K. et al. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2005; 43: 10: 5026-5033.

11. Garcia-Alvarez L. et al. Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 2011; 11: 8: 595-603.

12. Rosato A.E. et al. mecA-blaZ corepressors in clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother 2003; 47: 4: 1460-1463.

13. Chen L. et al. Multiplex real-time PCR for rapid staphylococcal cassette chromosome mec typing. J Clin Microbiol 2009; 47: 11: 3692-3706.

14. Kondo Y. et al. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 2007; 51: 1: 264-274.

15. Hisata K. et al. Dissemination of methicillin-resistant staphylococci among healthy Japanese children. J Clin Microbiol. 2005; 43: 7: 3364-3372.

16. Oliveira D.C., de Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2002; 46: 7: 2155-2161.

17. Stephens A.J., Huygens F., Giffard P.M. Systematic derivation of marker sets for staphylococcal cassette chromosome mec typing. Antimicrob Agents Chemother 2007; 51: 8: 2954-2964.

18. Shore A.C. et al. Detection of staphylococcal cassette chromosome mec-associated DNA segments in multiresistant methicillin-susceptible Staphylococcus aureus (MSSA) and identification of Staphylococcus epidermidis ccrAB4 in both methicillin-resistant S.aureus and MSSA. Antimicrob Agents Chemother 2008; 52: 12: 4407-4419.

19. Wong H. et al. Characterization of Staphylococcus aureus isolates with a partial or complete absence of staphylococcal cassette chromosome elements. J Clin Microbiol 2010;. 48: 10: 3525-3531.

20. Chambers H.F., Deleo F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 2009; 7: 9: 629-641.

21. Goering R.V. et al. Molecular epidemiology of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates from global clinical trials. J Clin Microbiol 2008; 46: 9: 2842-2847.

22. Davis S.L. et al. Epidemiology and outcomes of community-associated methicillin-resistant Staphylococcus aureus infection. J Clin Microbiol 2007; 45: 6: 1705-1711.

23. Josefsson E. et al. The surface protein Pls of methicillin-resistant Staphylococcus aureus is a virulence factor in septic arthritis. Infect Immun 2005; 73: 5: 2812-2817.

24. Boyle-Vavra S. et al. Successful multiresistant community-associated methicillin-resistant Staphylococcus aureus lineage from Taipei, Taiwan, that carries either the novel staphylococcal chromosome cassette mec (SCCmec) type VT or SCCmec type IV. J Clin Microbiol 2005; 43: 9: 4719-4730.

25. Ito T. et al. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob Agents Chemother 2004; 48: 7: 2637-2651.

26. Berglund C. et al. Genetic diversity of methicillin-resistant Staphylococcus aureus carrying type IV SCCmec in Orebro County and the western region of Sweden. J Antimicrob Chemother 2009; 63: 1: 32-41.

27. Ma X.X. et al. Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 2002; 46: 4: 1147-1152.

28. Milheirico C., Oliveira D.C., de Lencastre H. Multiplex PCR strategy for subtyping the staphylococcal cassette chromosome mec type IV in methicillin-resistant Staphylococcus aureus: 'SCCmec IV multiplex'. J Antimicrob Chemother 2007; 60: 1: 42-48.

29. Okuma K. et al. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol 2002; 40: 11: 4289-4294.

30. Takano T. et al. Novel characteristics of community-acquired methicillin-resistant Staphylococcus aureus strains belonging to multilocus sequence type 59 in Taiwan. Antimicrob Agents Chemother 2008; 52: 3: 837-845.

31. Oliveira D.C., Milheirico C., de Lencastre H. Redefining a structural variant of staphylococcal cassette chromosome mec, SCCmec type VI. Antimicrob Agents Chemother. 2006; 50: 10: 3457-3459.

32. Berglund C. et al. Novel type of staphylococcal cassette chromosome mec in a methicillin-resistant Staphylococcus aureus strain isolated in Sweden. Antimicrob Agents Chemother 2008; 52: 10: 3512-3516.

33. Higuchi W. et al. Structure and specific detection of staphylococcal cassette chromosome mec type VII. Biochem Biophys Res Commun 2008; 377: 3: 752-756.

34. Zhang K. et al. Novel staphylococcal cassette chromosome mec type, tentatively designated type VIII, harboring class A mec and type 4 ccr gene complexes in a Canadian epidemic strain of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2009; 53; 2: 531-540.

35. Li S. et al. Novel types of staphylococcal cassette chromosome mec elements identified in clonal complex 398 methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 2011; 55: 6: 3046-3050.

36. Shore A.C. et al. Detection of staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecI, mecRl, blaZ, and ccr genes in human clinical isolates ofclonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2011; 55: 8: 3765-3773.

37. David M.Z, Daum R.S. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 2010; 23: 3: 616-687.

38. Deurenberg R.H. et al. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 2007; 13: 3: 222-235.

39. Oliveira D.C., Tomasz A., de Lencastre H. Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resis-tant Staphylococcus aureus. Lancet Infect Dis 2002; 2: 3: 180-189.

40. Dohin B. et al. Pediatric bone and joint infections caused by Panton-Valentine leukocidin-positive Staphylococcus aureus. Pediatr Infect Dis J 2007; 26: 11: 1042-1048.

41. Meyer F. et al. Analysis of the specificity of Panton-Valentine leucocidin and gamma-hemolysin F component binding. Infect Immun 2009; 77: 1: 266-273.

42. Bartels M.D. et al. An unexpected location of the arginine catabolic mobile element (ACME) in a USA300-related MRSA strain. PLoS One 2011; 6: 1: e16193.

43. Diep B.A. et al. The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J Infect Dis 2008; 197: 11: 1523-1530.

44. Espedido B.A. et al. Carriage of an ACME II variant may have contributed to methicillin-resistant Staphylococcus aureus sequence type 239-like strain replacement in Liverpool hospital, Sydney, Australia. Antimicrob Agents Chemother 2012; 56: 6: 3380-3383.

45. Montgomery C.P., Boyle-Vavra S., Daum R.S. The arginine catabolic mobile element is not associated with enhanced virulence in experimental invasive disease caused by the community-associated methi-cillin-resistant Staphylococcus aureus USA300 genetic background. Infect Immun 2009; 77: 7: 2650-2656.

46. Shore A.C. et al. Characterization of a novel arginine catabolic mobile element (ACME) and staphylococcal chromosomal cassette mec composite island with significant homology to Staphylococcus epidermidis ACME type II in methicillin-resistant Staphylococcus aureus genotype ST22-MRSA-IV. Antimicrob Agents Chemother 2011; 55: 5: 1896-1905.

47. Witte W. et al. Emergence and spread of antibiotic-resistant gram-positive bacterial pathogens. Int J Med Microbiol 2008; 298: 5-6: 365-377.

48. Diep B.A. et al. Complete genome sequence of USA300, an epidemic clone of community-acquired methicillin-resistant Staphylococcus aureus. Lancet 2006; 367: 9512: 731-739.

49. Li M. et al. Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 2009; 106: 14: 5883-5888.

50. Enright M.C. et al. The evolutionary history of methicillin-resistant Staphylococcus aureus(MRSA). Proc Natl Acad Sci U S A 2002; 99: 11: 7687-7692.

51. Wielders C.L. et al. In-vivo transfer of mecA DNA to Staphylococcus aureus [corrected]. Lancet 2001; 357: 9269: 674-1675.

52. Wu S.W., de Lencastre H., Tomasz A. Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J Bacteriol 2001; 183: 8: 2417-2424.

53. Tsubakishita S. et al. Origin and molecular evolution of the determinant of methicillin resistance in staphylococci. Antimicrob Agents Chemother 2010; 54: 10: 4352-4359.

54. Tsubakishita S. et al. Staphylococcal cassette chromosome mec-like element in Macrococcus caseolyticus. Antimicrob Agents Chemother 2010; 54: 4: 1469-1475.

55. Chan V.L., Sherman P.M., Bourke B. Bacterial genomes and infectious diseases 2006, Totowa, N.J.: Humana Press. xiii: 270.

56. Enright M.C. et al. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 2000; 38: 3: 1008-1015.

57. Deurenberg R.H., Stobberingh E.E. The evolution of Staphylococcus aureus. Infect Genet Evol 2008; 8: 6: 747-763.

58. Lindsay J.A. et al. Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 2006; 188: 2: 669-676.

59. Nubel U. et al. Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 2008; 105: 37: 14130-14135.

60. Crum N.F. et al. Fifteen-year study of the changing epidemiology of methicillin-resistant Staphylococcus aureus. Am J Med 2006; 119: 11: 943-951.

61. Feng Y. et al. Evolution and pathogenesis of Staphylococcus aureus: lessons learned from genotyping and comparative genomics. FEMS Microbiol Rev 2008; 32: 1: 23-37.

62. Gomes A.R., Westh H., de Lencastre H. Origins and evolution of methicillin-resistant Staphylococcus aureus clonal lineages. Antimicrob Agents Chemother 2006; 50: 10: 3237-3244.

63. Grundmann H. et al. Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med 2010; 7: 1: e1000215.

64. Oliveira D.C., Tomasz A., de Lencastre H. The evolution of pandemic clones of methicillin-resistant Staphylococcus aureus: identification of two ancestral genetic backgrounds and the associated mec elements. Microb Drug Resist 2001; 7: 4: 349-361.

65. Salmenlinna S. et al. Human cases of methicillin-resistant Staphylococcus aureus CC398, Finland. Emerg Infect Dis 2010; 16: 10: 1626-1629.

66. Afanas'ev M.V., Il'Ina E.N., Govorun V.M., Salem A.-S.-A.-M., Sidorenko S.V. Molecular genetic characterization of methicillin-resis-tant Staphylococcus aureus isolates recovered from Moscow clinics. Molecular Genetics, Microbiol Virol 2010; 25: 2: 66-70.

67. Дмитренко О.А. Молекулярно-генетические аспекты эпидемиологии внутрибольничных инфекций, вызванных представителями вида Staphylococcus aureus, устойчивыми к метициллину/оксациллину, Автореф. дис.. д.м.н. 2008: М.: 43.

68. Vorobieva V. et al. Clinical isolates of Staphylococcus aureus from the Arkhangelsk region, Russia: antimicrobial susceptibility, molecular epidemiology, and distribution of Panton-Valentine leukocidin genes. APMIS, 2008; 116: 10: 877-887.

69. Yamamoto T. et al. Comparative genomics and drug resistance of a geographic variant of ST239 methicillin-resistant Staphylococcus aureus emerged in Russia. PLoS One 2012; 7: 1: e29187.

70. Chen L. et al. Identification of a novel transposon (Tn6072) and a truncated staphylococcal cassette chromosome mec element in methicillin-resistant Staphylococcus aureus ST239. Antimicrob Agents Chemother 2010; 54: 8: 3347-3354.


Для цитирования:


Гостев В.В., Сидоренко С.В. SCCmec кассеты, эволюция и генетические линии метициллинорезистентных золотистых стафилококков. Антибиотики и Химиотерапия. 2012;57(9-10):38-46.

For citation:


Gostev V.V., Sidorenko S.V. Staphylococcal Cassette Chromosome mec, Evolution and Genetic Lines of Methicillin Resistant Staphylococcus aureus. Antibiotics and Chemotherapy. 2012;57(9-10):38-46. (In Russ.)

Просмотров: 42


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)