Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Staphylococcal Cassette Chromosome mec, Evolution and Genetic Lines of Methicillin Resistant Staphylococcus aureus

Abstract

Methicillin resistant Staphylococcus aureus (MRSA) is the main pathogen of hospital- and community-associated infections. Methicillin resistance is due to mecA gene located in a mobile complex element, staphylococcal cassette chromosome mec (SCCmec). The structure of the staphylococcal cassettes is diverse. At present eleven types of the cassettes are described. Types I-IV SCCmec are always associated with epidemiologically significant genetic lines of Staphylococcus. Thus, the pandemic hospital-associated MRSA (HA MRSA) belonging to CC5 and CC8 are of the types I-III SCCmec. The prevalence of virulent community-associated MRSA (CA MRSA) in many regions of the world is first of all connected with the characteristics of the type IV SCCmec structure and the presence of a recently described arginine catabolic mobile element (ACME) increasing the colonization activity of Staphylococcus. The review presents the up-to-date data on the origin, genetic structure and classification of SCCmec. Global genetic lines of MRSA are described and the problem of CA MRSA is discussed.

About the Authors

V. V. Gostev
Research Institute of Children's Infections
Russian Federation


S. V. Sidorenko
Research Institute of Children's Infections
Russian Federation


References

1. Jevons M. «Celbenin»-resistant staphylococci. BMJ, 1961. 1 (5219): p. 124-125.

2. Matsuhashi M. et al. Molecular cloning of the gene of a penicillin-binding protein supposed to cause high resistance to beta-lactam antibiotics in Staphylococcus aureus. J Bacteriol 1986; 167: 3: 975-980.

3. Brown D.F., Reynolds P.E. Intrinsic resistance to beta-lactam antibiotics in Staphylococcus aureus. FEBS Lett 1980; 122: 2:. 275-278.

4. Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2000; 44: 6: 1549-1555.

5. Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother 2009; 53: 12: 4961-4967.

6. Ruppe E. et al. Diversity of staphylococcal cassette chromosome mec structures in methicillin-resistant Staphylococcus epidermidis and Staphylococcus haemolyticus strains among outpatients from four countries. Antimicrob Agents Chemother 2009; 53: 2: 442-449.

7. Soderquist B, Berglund C. Methicillin-resistant Staphylococcus saprophyticus in Sweden carries various types of staphylococcal cassette chromosome mec (SCCmec). Clin Microbiol Infect. 2009; 15: 12: 1176-1178.

8. Mallorqui-Fernandez G. et al. Staphylococcal methicillin resistance: fine focus on folds and functions. FEMS Microbiol Lett 2004; 235: 1: 1-8.

9. Ito T. et al. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2001; 45: 5: 1323-1336.

10. Zhang K. et al. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2005; 43: 10: 5026-5033.

11. Garcia-Alvarez L. et al. Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 2011; 11: 8: 595-603.

12. Rosato A.E. et al. mecA-blaZ corepressors in clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother 2003; 47: 4: 1460-1463.

13. Chen L. et al. Multiplex real-time PCR for rapid staphylococcal cassette chromosome mec typing. J Clin Microbiol 2009; 47: 11: 3692-3706.

14. Kondo Y. et al. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 2007; 51: 1: 264-274.

15. Hisata K. et al. Dissemination of methicillin-resistant staphylococci among healthy Japanese children. J Clin Microbiol. 2005; 43: 7: 3364-3372.

16. Oliveira D.C., de Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2002; 46: 7: 2155-2161.

17. Stephens A.J., Huygens F., Giffard P.M. Systematic derivation of marker sets for staphylococcal cassette chromosome mec typing. Antimicrob Agents Chemother 2007; 51: 8: 2954-2964.

18. Shore A.C. et al. Detection of staphylococcal cassette chromosome mec-associated DNA segments in multiresistant methicillin-susceptible Staphylococcus aureus (MSSA) and identification of Staphylococcus epidermidis ccrAB4 in both methicillin-resistant S.aureus and MSSA. Antimicrob Agents Chemother 2008; 52: 12: 4407-4419.

19. Wong H. et al. Characterization of Staphylococcus aureus isolates with a partial or complete absence of staphylococcal cassette chromosome elements. J Clin Microbiol 2010;. 48: 10: 3525-3531.

20. Chambers H.F., Deleo F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 2009; 7: 9: 629-641.

21. Goering R.V. et al. Molecular epidemiology of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates from global clinical trials. J Clin Microbiol 2008; 46: 9: 2842-2847.

22. Davis S.L. et al. Epidemiology and outcomes of community-associated methicillin-resistant Staphylococcus aureus infection. J Clin Microbiol 2007; 45: 6: 1705-1711.

23. Josefsson E. et al. The surface protein Pls of methicillin-resistant Staphylococcus aureus is a virulence factor in septic arthritis. Infect Immun 2005; 73: 5: 2812-2817.

24. Boyle-Vavra S. et al. Successful multiresistant community-associated methicillin-resistant Staphylococcus aureus lineage from Taipei, Taiwan, that carries either the novel staphylococcal chromosome cassette mec (SCCmec) type VT or SCCmec type IV. J Clin Microbiol 2005; 43: 9: 4719-4730.

25. Ito T. et al. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob Agents Chemother 2004; 48: 7: 2637-2651.

26. Berglund C. et al. Genetic diversity of methicillin-resistant Staphylococcus aureus carrying type IV SCCmec in Orebro County and the western region of Sweden. J Antimicrob Chemother 2009; 63: 1: 32-41.

27. Ma X.X. et al. Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 2002; 46: 4: 1147-1152.

28. Milheirico C., Oliveira D.C., de Lencastre H. Multiplex PCR strategy for subtyping the staphylococcal cassette chromosome mec type IV in methicillin-resistant Staphylococcus aureus: 'SCCmec IV multiplex'. J Antimicrob Chemother 2007; 60: 1: 42-48.

29. Okuma K. et al. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol 2002; 40: 11: 4289-4294.

30. Takano T. et al. Novel characteristics of community-acquired methicillin-resistant Staphylococcus aureus strains belonging to multilocus sequence type 59 in Taiwan. Antimicrob Agents Chemother 2008; 52: 3: 837-845.

31. Oliveira D.C., Milheirico C., de Lencastre H. Redefining a structural variant of staphylococcal cassette chromosome mec, SCCmec type VI. Antimicrob Agents Chemother. 2006; 50: 10: 3457-3459.

32. Berglund C. et al. Novel type of staphylococcal cassette chromosome mec in a methicillin-resistant Staphylococcus aureus strain isolated in Sweden. Antimicrob Agents Chemother 2008; 52: 10: 3512-3516.

33. Higuchi W. et al. Structure and specific detection of staphylococcal cassette chromosome mec type VII. Biochem Biophys Res Commun 2008; 377: 3: 752-756.

34. Zhang K. et al. Novel staphylococcal cassette chromosome mec type, tentatively designated type VIII, harboring class A mec and type 4 ccr gene complexes in a Canadian epidemic strain of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2009; 53; 2: 531-540.

35. Li S. et al. Novel types of staphylococcal cassette chromosome mec elements identified in clonal complex 398 methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 2011; 55: 6: 3046-3050.

36. Shore A.C. et al. Detection of staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecI, mecRl, blaZ, and ccr genes in human clinical isolates ofclonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2011; 55: 8: 3765-3773.

37. David M.Z, Daum R.S. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 2010; 23: 3: 616-687.

38. Deurenberg R.H. et al. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 2007; 13: 3: 222-235.

39. Oliveira D.C., Tomasz A., de Lencastre H. Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resis-tant Staphylococcus aureus. Lancet Infect Dis 2002; 2: 3: 180-189.

40. Dohin B. et al. Pediatric bone and joint infections caused by Panton-Valentine leukocidin-positive Staphylococcus aureus. Pediatr Infect Dis J 2007; 26: 11: 1042-1048.

41. Meyer F. et al. Analysis of the specificity of Panton-Valentine leucocidin and gamma-hemolysin F component binding. Infect Immun 2009; 77: 1: 266-273.

42. Bartels M.D. et al. An unexpected location of the arginine catabolic mobile element (ACME) in a USA300-related MRSA strain. PLoS One 2011; 6: 1: e16193.

43. Diep B.A. et al. The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J Infect Dis 2008; 197: 11: 1523-1530.

44. Espedido B.A. et al. Carriage of an ACME II variant may have contributed to methicillin-resistant Staphylococcus aureus sequence type 239-like strain replacement in Liverpool hospital, Sydney, Australia. Antimicrob Agents Chemother 2012; 56: 6: 3380-3383.

45. Montgomery C.P., Boyle-Vavra S., Daum R.S. The arginine catabolic mobile element is not associated with enhanced virulence in experimental invasive disease caused by the community-associated methi-cillin-resistant Staphylococcus aureus USA300 genetic background. Infect Immun 2009; 77: 7: 2650-2656.

46. Shore A.C. et al. Characterization of a novel arginine catabolic mobile element (ACME) and staphylococcal chromosomal cassette mec composite island with significant homology to Staphylococcus epidermidis ACME type II in methicillin-resistant Staphylococcus aureus genotype ST22-MRSA-IV. Antimicrob Agents Chemother 2011; 55: 5: 1896-1905.

47. Witte W. et al. Emergence and spread of antibiotic-resistant gram-positive bacterial pathogens. Int J Med Microbiol 2008; 298: 5-6: 365-377.

48. Diep B.A. et al. Complete genome sequence of USA300, an epidemic clone of community-acquired methicillin-resistant Staphylococcus aureus. Lancet 2006; 367: 9512: 731-739.

49. Li M. et al. Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 2009; 106: 14: 5883-5888.

50. Enright M.C. et al. The evolutionary history of methicillin-resistant Staphylococcus aureus(MRSA). Proc Natl Acad Sci U S A 2002; 99: 11: 7687-7692.

51. Wielders C.L. et al. In-vivo transfer of mecA DNA to Staphylococcus aureus [corrected]. Lancet 2001; 357: 9269: 674-1675.

52. Wu S.W., de Lencastre H., Tomasz A. Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J Bacteriol 2001; 183: 8: 2417-2424.

53. Tsubakishita S. et al. Origin and molecular evolution of the determinant of methicillin resistance in staphylococci. Antimicrob Agents Chemother 2010; 54: 10: 4352-4359.

54. Tsubakishita S. et al. Staphylococcal cassette chromosome mec-like element in Macrococcus caseolyticus. Antimicrob Agents Chemother 2010; 54: 4: 1469-1475.

55. Chan V.L., Sherman P.M., Bourke B. Bacterial genomes and infectious diseases 2006, Totowa, N.J.: Humana Press. xiii: 270.

56. Enright M.C. et al. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 2000; 38: 3: 1008-1015.

57. Deurenberg R.H., Stobberingh E.E. The evolution of Staphylococcus aureus. Infect Genet Evol 2008; 8: 6: 747-763.

58. Lindsay J.A. et al. Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 2006; 188: 2: 669-676.

59. Nubel U. et al. Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 2008; 105: 37: 14130-14135.

60. Crum N.F. et al. Fifteen-year study of the changing epidemiology of methicillin-resistant Staphylococcus aureus. Am J Med 2006; 119: 11: 943-951.

61. Feng Y. et al. Evolution and pathogenesis of Staphylococcus aureus: lessons learned from genotyping and comparative genomics. FEMS Microbiol Rev 2008; 32: 1: 23-37.

62. Gomes A.R., Westh H., de Lencastre H. Origins and evolution of methicillin-resistant Staphylococcus aureus clonal lineages. Antimicrob Agents Chemother 2006; 50: 10: 3237-3244.

63. Grundmann H. et al. Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med 2010; 7: 1: e1000215.

64. Oliveira D.C., Tomasz A., de Lencastre H. The evolution of pandemic clones of methicillin-resistant Staphylococcus aureus: identification of two ancestral genetic backgrounds and the associated mec elements. Microb Drug Resist 2001; 7: 4: 349-361.

65. Salmenlinna S. et al. Human cases of methicillin-resistant Staphylococcus aureus CC398, Finland. Emerg Infect Dis 2010; 16: 10: 1626-1629.

66. Afanas'ev M.V., Il'Ina E.N., Govorun V.M., Salem A.-S.-A.-M., Sidorenko S.V. Molecular genetic characterization of methicillin-resis-tant Staphylococcus aureus isolates recovered from Moscow clinics. Molecular Genetics, Microbiol Virol 2010; 25: 2: 66-70.

67. Дмитренко О.А. Молекулярно-генетические аспекты эпидемиологии внутрибольничных инфекций, вызванных представителями вида Staphylococcus aureus, устойчивыми к метициллину/оксациллину, Автореф. дис.. д.м.н. 2008: М.: 43.

68. Vorobieva V. et al. Clinical isolates of Staphylococcus aureus from the Arkhangelsk region, Russia: antimicrobial susceptibility, molecular epidemiology, and distribution of Panton-Valentine leukocidin genes. APMIS, 2008; 116: 10: 877-887.

69. Yamamoto T. et al. Comparative genomics and drug resistance of a geographic variant of ST239 methicillin-resistant Staphylococcus aureus emerged in Russia. PLoS One 2012; 7: 1: e29187.

70. Chen L. et al. Identification of a novel transposon (Tn6072) and a truncated staphylococcal cassette chromosome mec element in methicillin-resistant Staphylococcus aureus ST239. Antimicrob Agents Chemother 2010; 54: 8: 3347-3354.


Review

For citations:


Gostev V.V., Sidorenko S.V. Staphylococcal Cassette Chromosome mec, Evolution and Genetic Lines of Methicillin Resistant Staphylococcus aureus. Antibiot Khimioter = Antibiotics and Chemotherapy. 2012;57(9-10):38-46. (In Russ.)

Views: 403


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)